In [6], S. Bloch conjectures a formula for the Artin conductor of the ℓ-adic etale cohomology of a regular model of a variety over a local field and proves it for a curve. The formula, which we call the conductor formula of Bloch, enables us to compute the conductor that measures the wild ramification by using the sheaf of differential 1-forms. In this paper, we prove the formula in arbitrary dimension under the assumption that the reduced closed fiber has normal crossings.
@article{PMIHES_2004__100__5_0, author = {Kato, Kazuya and Saito, Takeshi}, title = {On the conductor formula of {Bloch}}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {5--151}, publisher = {Springer}, volume = {100}, year = {2004}, doi = {10.1007/s10240-004-0026-6}, mrnumber = {2102698}, zbl = {1099.14009}, language = {en}, url = {https://www.numdam.org/articles/10.1007/s10240-004-0026-6/} }
TY - JOUR AU - Kato, Kazuya AU - Saito, Takeshi TI - On the conductor formula of Bloch JO - Publications Mathématiques de l'IHÉS PY - 2004 SP - 5 EP - 151 VL - 100 PB - Springer UR - https://www.numdam.org/articles/10.1007/s10240-004-0026-6/ DO - 10.1007/s10240-004-0026-6 LA - en ID - PMIHES_2004__100__5_0 ER -
Kato, Kazuya; Saito, Takeshi. On the conductor formula of Bloch. Publications Mathématiques de l'IHÉS, Tome 100 (2004), pp. 5-151. doi : 10.1007/s10240-004-0026-6. https://www.numdam.org/articles/10.1007/s10240-004-0026-6/
1. Cycles on arithmetic surfaces, Compos. Math., 122 (2000), no. 1, 23-111. | MR | Zbl
,2. A. Abbes, The Whitney sum formula for localized Chern classes, to appear in J. Théor. Nombres Bordx.
3. Ramification groups of local fields with imperfect residue fields II, Doc. Math., Extra Volume Kato (2003), 3-70. | MR | Zbl
and ,4. K. Arai, Conductor formula of Bloch, in tame case (in Japanese), Master thesis at University of Tokyo, 2000.
5. Projective exterior Koszul homology and decomposition of the Tor functor, Invent. Math., 123 (1996), 123-140. | MR | Zbl
, , and ,6. Cycles on arithmetic schemes and Euler characteristics of curves, Algebraic geometry, Bowdoin, 1985, 421-450, Proc. Symp. Pure Math. 46, Part 2, Am. Math. Soc., Providence, RI (1987). | MR | Zbl
,7. constants and Arakelov Euler characteristics, Math. Res. Lett., 7 (2000), no. 4, 433-446. | Zbl
, , and , ε-8. Smoothness, semi-stability and alterations, Publ. Math., Inst. Hautes Étud. Sci., 83 (1996), 51-93. | Numdam | MR | Zbl
,9. Équations différentielles à points singuliers réguliers, Lect. Notes Math. 163, Springer, Berlin-New York (1970). | MR | Zbl
,10. P. Deligne and N. Katz, Groupes de monodromie en géométrie algébrique, (SGA 7 II), Lect. Notes Math. 340, Springer, Berlin-New York (1973). | MR | Zbl
11. Homologie nicht-additiver Funktoren, Anwendungen, Ann. Inst. Fourier, 11 (1961), 201-312. | Numdam | MR | Zbl
and ,12. K. Fujiwara and K. Kato, Logarithmic etale topology theory, preprint.
13. Intersection theory, 2nd ed. Ergeb. Math. Grenzgeb., 3. Folge. 2, Springer, Berlin (1998). | MR | Zbl
,14. Riemann-Roch algebra, Grundlehren Math. Wiss. 277, Springer, Berlin-New York (1985). | MR | Zbl
and ,15. A. Grothendieck with J. Dieudonné, Eléments de géométrie algèbrique IV, Publ. Math., Inst. Hautes Étud. Sci., 20, 24, 28, 32 (1964-1967). | Numdam | MR | Zbl
16. A. Grothendieck et. al., Théorie des topos et cohomologie étale des schemas, (SGA 4), tome 3, Lect. Notes Math. 305, Springer, Berlin-New York (1973). | MR | Zbl
17. A. Grothendieck et. al., Théorie des intersections et théorème de Riemann-Roch, (SGA 6), Lect. Notes Math. 225, Springer, Berlin-New York (1971). | MR
18. Residues and Duality, Lect. Notes Math. 20, Springer, Berlin-New York (1966). | MR | Zbl
,19. Complexe cotangent et déformations I, Lect. Notes Math. 239, Springer, Berlin-New York (1971). | MR | Zbl
,20. An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic etale cohomology, Cohomologies p-adiques et applications arithmétiques, II. Astérisque, 279 (2002), 271-322. | Numdam | MR | Zbl
,21. L. Illusie, Champs toriques et log lissité, preprint (2000).
22. Critical points of an algebraic function, Invent. Math. 12 (1971), 210-224. | MR | Zbl
,23. Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (J.-I. Igusa ed.), Johns Hopkins UP, Baltimore (1989), 191-224. | MR | Zbl
,
24. Class field theory,
25. Toric singularities, Am. J. Math., 116 (1994), 1073-1099. | MR | Zbl
,26. Artin characters for algebraic surfaces, Am. J. Math., 110 (1988), no. 1, 49-75. | MR | Zbl
, , and ,27. A generalization of the imbedding problem of an abstract variety in a complete variety, J. Math. Kyoto Univ., 3 (1963), 89-102. | MR | Zbl
,28. Logarithmic étale cohomology, Math. Ann., 308 (1997), 365-404. | MR | Zbl
,29. Nearby cycles for log smooth families, Compos. Math., 112 (1998), 45-75. | MR | Zbl
,30. l-independence of the trace of monodromy, Math. Ann., 315 (1999), no. 2, 321-340. | MR | Zbl
,31. Elliptic curves and wild ramification, Am. J. Math. 89 (1967), 1-21. | MR | Zbl
,32. Logarithmic geometry and algebraic stacks, Ann. Sci. Éc. Norm. Supér., 36 (2003), 747-791. | Numdam | MR | Zbl
,33. Conjecture de Bloch et nombres de Milnor, Ann. Inst. Fourier, 53 (2003), 1739-1754. | Numdam | MR | Zbl
,34. Notes on the homology of commutative rings, Mimeographed Notes, MIT (1968). | Zbl
,35. On the (co-) homology of commutative rings, in Applications of Categorical Algebra (Proc. Sympos. Pure Math., XVII, New York, 1968, 65-87. Am. Math. Soc., Providence, R.I. | MR | Zbl
,36. Corps locaux, 3rd ed., Hermann, Paris (1968). | MR | Zbl
,37. Représentations linéaires des groupes finis, 3rd ed., Hermann, Paris (1978). | MR | Zbl
,38. Conductor, discriminant, and the Noether formula for arithmetic surfaces, Duke Math. J., 57 (1988), no. 1, 151-173. | MR | Zbl
,39. Self-intersection 0-cycles and coherent sheaves on arithmetic schemes, Duke Math. J., 57 (1988), no. 2, 555-578. | MR | Zbl
,40. Parity in Bloch's conductor formula in even dimension, to appear in J. Théor. Nombres Bordx. | Numdam | Zbl
,41. Weight spectral sequences and independence of ℓ, J. de l'Institut Math. de Jussieu, 2 (2003), 1-52. | Zbl
,42. An introduction to homological algebra, Cambr. Stud. Adv. Math., 38, Cambridge UP, Cambridge (1994). | MR | Zbl
,- Motivic Euler characteristic of nearby cycles and a generalised quadratic conductor formula, Journal of Algebra, Volume 667 (2025), p. 109 | DOI:10.1016/j.jalgebra.2024.12.010
- ON DEFORMATION THEORY IN HIGHER LOGARITHMIC GEOMETRY, Journal of the Institute of Mathematics of Jussieu (2025), p. 1 | DOI:10.1017/s1474748025000027
- Euler characteristics of homogeneous and weighted-homogeneous hypersurfaces, Advances in Mathematics, Volume 441 (2024), p. 109556 | DOI:10.1016/j.aim.2024.109556
- Log p-divisible groups associated with log 1-motives, Canadian Journal of Mathematics, Volume 76 (2024) no. 3, p. 946 | DOI:10.4153/s0008414x23000287
- Erratum to Discriminants and Artin conductors (J. reine angew. Math. 712 (2016), 107–121), Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2024 (2024) no. 814, p. 283 | DOI:10.1515/crelle-2024-0059
- SPECIAL VALUES OF ZETA-FUNCTIONS OF REGULAR SCHEMES, Journal of the Institute of Mathematics of Jussieu, Volume 23 (2024) no. 1, p. 495 | DOI:10.1017/s1474748022000524
- A Hochschild-Kostant-Rosenberg theorem and residue sequences for logarithmic Hochschild homology, Advances in Mathematics, Volume 435 (2023), p. 109354 | DOI:10.1016/j.aim.2023.109354
- Some refinements of the Deligne–Illusie theorem, Algebra Number Theory, Volume 17 (2023) no. 2, p. 465 | DOI:10.2140/ant.2023.17.465
- Logarithmic Prismatic Cohomology via Logarithmic THH, International Mathematics Research Notices, Volume 2023 (2023) no. 22, p. 19641 | DOI:10.1093/imrn/rnad224
- Semi-continuity of conductors, and ramification bound of nearby cycles, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 0 (2023) no. 0 | DOI:10.1515/crelle-2023-0060
- VALUES OF ZETA FUNCTIONS OF ARITHMETIC SURFACES AT, Journal of the Institute of Mathematics of Jussieu, Volume 22 (2023) no. 5, p. 2455 | DOI:10.1017/s1474748022000093
- Trace and Künneth formulas for singularity categories and applications, Compositio Mathematica, Volume 158 (2022) no. 3, p. 483 | DOI:10.1112/s0010437x22007424
- Log smooth curves over discrete valuation rings, manuscripta mathematica, Volume 167 (2022) no. 1-2, p. 197 | DOI:10.1007/s00229-020-01268-1
- Characteristic cycle and wild ramification for nearby cycles of étale sheaves, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2021 (2021) no. 776, p. 27 | DOI:10.1515/crelle-2021-0009
- Logarithmic Structures of Fontaine-Illusie. II —Logarithmic Flat Topology, Tokyo Journal of Mathematics, Volume 44 (2021) no. 1 | DOI:10.3836/tjm/1502179316
- Convergence of p-adic pluricanonical measures to Lebesgue measures on skeleta in Berkovich spaces, Journal de l’École polytechnique — Mathématiques, Volume 7 (2020), p. 287 | DOI:10.5802/jep.118
- Characteristic cycles and the conductor of direct image, Journal of the American Mathematical Society, Volume 34 (2020) no. 2, p. 369 | DOI:10.1090/jams/959
- Monodromy and log geometry, Tunisian Journal of Mathematics, Volume 2 (2020) no. 3, p. 455 | DOI:10.2140/tunis.2020.2.455
- On log motives, Tunisian Journal of Mathematics, Volume 2 (2020) no. 4, p. 733 | DOI:10.2140/tunis.2020.2.733
- The
ℓ -adic trace formula for dg-categories and Bloch’s conductor conjecture, Bollettino dell'Unione Matematica Italiana, Volume 12 (2019) no. 1-2, p. 3 | DOI:10.1007/s40574-018-0166-0 - Lectures on Logarithmic Algebraic Geometry, 2018 | DOI:10.1017/9781316941614
- Logarithmic étale cohomology, II, Advances in Mathematics, Volume 314 (2017), p. 663 | DOI:10.1016/j.aim.2017.05.006
- Wild ramification and the cotangent bundle, Journal of Algebraic Geometry, Volume 26 (2016) no. 3, p. 399 | DOI:10.1090/jag/681
- A logarithmic interpretation of Edixhoven's jumps for Jacobians, Advances in Mathematics, Volume 279 (2015), p. 532 | DOI:10.1016/j.aim.2015.04.007
- From Pierre Deligne’s secret garden: looking back at some of his letters, Japanese Journal of Mathematics, Volume 10 (2015) no. 2, p. 237 | DOI:10.1007/s11537-015-1514-9
- Refined characteristic class and conductor formula, Mathematische Zeitschrift, Volume 281 (2015) no. 1-2, p. 571 | DOI:10.1007/s00209-015-1502-z
- Drinfelʼd–Ihara relations for p -adic multi-zeta values, Journal of Number Theory, Volume 133 (2013) no. 5, p. 1435 | DOI:10.1016/j.jnt.2012.10.006
- On log flat descent, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 89 (2013) no. 1 | DOI:10.3792/pjaa.89.1
- Ramification theory for varieties over a local field, Publications mathématiques de l'IHÉS, Volume 117 (2013) no. 1, p. 1 | DOI:10.1007/s10240-013-0048-z
- On ramification filtrations and p-adic differential equations, II: mixed characteristic case, Compositio Mathematica, Volume 148 (2012) no. 2, p. 415 | DOI:10.1112/s0010437x1100707x
- On localizations of the characteristic classes of ℓ-adic sheaves and conductor formula in characteristic p > 0, Mathematische Zeitschrift, Volume 269 (2011) no. 1-2, p. 411 | DOI:10.1007/s00209-010-0743-0
- Ramification and cleanliness, Tohoku Mathematical Journal, Volume 63 (2011) no. 4 | DOI:10.2748/tmj/1325886290
- Formule du conducteur pour un caractère l-adique, Compositio Mathematica, Volume 145 (2009) no. 03, p. 687 | DOI:10.1112/s0010437x08003850
- Wild ramification and the characteristic cycle of an ℓ-adic sheaf, Journal of the Institute of Mathematics of Jussieu, Volume 8 (2009) no. 4, p. 769 | DOI:10.1017/s1474748008000364
- Miscellany on traces in ℓ-adic cohomology: a survey, Japanese Journal of Mathematics, Volume 1 (2006) no. 1, p. 107 | DOI:10.1007/s11537-006-0504-3
- The logarithmic cotangent complex, Mathematische Annalen, Volume 333 (2005) no. 4, p. 859 | DOI:10.1007/s00208-005-0707-6
Cité par 36 documents. Sources : Crossref