We present a novel application of best
Mots-clés : best N-term approximation, wavelets, electron correlations, Jastrow factor
@article{M2AN_2007__41_2_261_0, author = {Flad, Heinz-J\"urgen and Hackbusch, Wolfgang and Schneider, Reinhold}, title = {Best $N$-term approximation in electronic structure calculations. {II.} {Jastrow} factors}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {261--279}, publisher = {EDP-Sciences}, volume = {41}, number = {2}, year = {2007}, doi = {10.1051/m2an:2007016}, mrnumber = {2339628}, zbl = {1135.81029}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an:2007016/} }
TY - JOUR AU - Flad, Heinz-Jürgen AU - Hackbusch, Wolfgang AU - Schneider, Reinhold TI - Best $N$-term approximation in electronic structure calculations. II. Jastrow factors JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2007 SP - 261 EP - 279 VL - 41 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2007016/ DO - 10.1051/m2an:2007016 LA - en ID - M2AN_2007__41_2_261_0 ER -
%0 Journal Article %A Flad, Heinz-Jürgen %A Hackbusch, Wolfgang %A Schneider, Reinhold %T Best $N$-term approximation in electronic structure calculations. II. Jastrow factors %J ESAIM: Modélisation mathématique et analyse numérique %D 2007 %P 261-279 %V 41 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an:2007016/ %R 10.1051/m2an:2007016 %G en %F M2AN_2007__41_2_261_0
Flad, Heinz-Jürgen; Hackbusch, Wolfgang; Schneider, Reinhold. Best $N$-term approximation in electronic structure calculations. II. Jastrow factors. ESAIM: Modélisation mathématique et analyse numérique, Special issue on Molecular Modelling, Tome 41 (2007) no. 2, pp. 261-279. doi : 10.1051/m2an:2007016. https://www.numdam.org/articles/10.1051/m2an:2007016/
[1] Lectures on exponential decay of solutions of second-order elliptic equations: Bounds on eigenfunctions of N-body Schrödinger operators, Mathematical Notes 29. Princeton University Press (1982). | MR | Zbl
,[2] Sparse grids. Acta Numer. 13 (2004) 147-269. | Zbl
and ,[3] Electron correlations in atomic systems. Phys. Rep. 223 (1992) 1-42.
, and ,[4] Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions. Phys. Rev. B 18 (1978) 3126-3138.
,[5] Variational theory of nuclear matter, in Progress in Nuclear and Particle Physics, Vol. 2, D.H. Wilkinson Ed., Pergamon, Oxford (1979) 89-199.
,[6] Asymptotic Expansions. Cambridge University Press, Cambridge (1967). | MR | Zbl
,[7] Wavelet approximation methods for pseudodifferential equations. II: Matrix compression and fast solution. Adv. Comp. Maths. 1 (1993) 259-335. | Zbl
, and ,[8] Wavelet approximation methods for pseudodifferential equations. I: Stability and convergence. Math. Z. 215 (1994) 583-620. | Zbl
, and ,[9] Nonlinear approximation. Acta Numer. 7 (1998) 51-150. | Zbl
,[10] Compression of wavelet decompositions. Amer. J. Math. 114 (1992) 737-785. | Zbl
, and ,[11] Hyperbolic wavelet approximation. Constr. Approx. 14 (1998) 1-26. | Zbl
, and ,[12] Jastrow correlation factor for atoms, molecules, and solids. Phys. Rev. B 70 (2004) 235119.
, and ,[13] Transfer of electron correlation from the electron gas to inhomogeneous systems via Jastrow factors. Phys. Rev. A. 50 (1994) 3742-3746.
and ,[14] A new Jastrow factor for atoms and molecules, using two-electron systems as a guiding principle. J. Chem. Phys. 103 (1995) 691-697.
and ,[15] Wavelet approximation of correlated wavefunctions. I. Basics. J. Chem. Phys. 116 (2002) 9641-9657.
, , and ,[16] Diagrammatic multiresolution analysis for electron correlations. Phys. Rev. B 71 (2005) 125115.
, , and ,
[17] Best
[18] Sharp regularity results for Coulombic many-electron wave functions. Commun. Math. Phys. 255 (2005) 183-227. | Zbl
, , and ,[19] Variational calculations on the helium isoelectronic sequence. Phys. Rev. A 29 (1984) 980-982.
, and ,[20] Electron Correlations in Molecules and Solids, 2nd edition. Springer, Berlin (1993).
,[21] Ground-state wave functions and energies of solids. Int. J. Quant. Chem. 76 (2000) 385-395.
,[22] On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. J. Comp. Phys. 165 (2000) 694-716. | Zbl
and ,[23] Inhomogeneous random-phase approximation and many-electron trial wave functions. Phys. Rev. B 63 (2001) 115115.
, , , and ,[24] Hierarchical Kronecker tensor-product approximation. J. Numer. Math. 13 (2005) 119-156. | Zbl
, and ,[25] Basis-set convergence in correlated calculations on Ne 286 (1998) 243-252.
, , , , , and ,[26] Basis-set convergence of correlated calculations on water. J. Chem. Phys. 106 (1997) 9639-9646.
, , and ,[27] Molecular Electronic-Structure Theory. Wiley, New York (1999).
, and ,[28] Rates of convergence and error estimation formulas for the Rayleigh-Ritz variational method. J. Chem. Phys. 83 (1985) 1173-1196.
,[29] Cusp conditions for eigenfunctions of n-electron systems. Phys. Rev. A 23 (1981) 21-23.
and ,[30] Local properties of Coulombic wave functions. Commun. Math. Phys. 163 (1994) 185-215. | Zbl
, and ,[31] Accuracy of electronic wave functions in quantum Monte Carlo: The effect of high-order correlations. J. Chem. Phys. 107 (1997) 3007-3013.
, and ,[32] On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10 (1957) 151-177. | Zbl
,[33] Variations on the electron gas. Ann. Phys. (N.Y.) 155 (1984) 1-55.
,[34] Theory of inhomogeneous quantum systems. III. Variational wave functions for Fermi fluids. Phys. Rev. B 31 (1985) 4267-4278.
,[35] Theory of inhomogeneous quantum systems. IV. Variational calculations of metal surfaces. Phys. Rev. B 32 (1985) 5693-5712.
, and ,
[36]
[37] Rates of convergence of the partial-wave expansions of atomic correlation energies. J. Chem. Phys. 96 (1992) 4484-4508.
and ,[38] Wavelet approximation of correlated wavefunctions. II. Hyperbolic wavelets and adaptive approximation schemes. J. Chem. Phys. 117 (2002) 3625-3638.
, , , and ,[39] Perturbative calculation of Jastrow factors. Phys. Rev. B. 75 (2007) 125111.
, , and ,[40] Sparse approximation of singularity functions. Constr. Approx. 21 (2005) 63-81. | Zbl
,[41] Best N-term approximation spaces for tensor product wavelet bases. Constr. Approx. 24 (2006) 49-70. | Zbl
,[42] Local structure of electron correlations in atomic systems. Chem. Phys. Lett. 163 (1989) 537-541.
, and ,[43] Correlated Monte Carlo wave functions for the atoms He through Ne. J. Chem. Phys. 93 (1990) 4172-4178.
and ,[44] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press (1993). | MR | Zbl
,[45] The local ansatz extended. J. Chem. Phys. 105 (1996) 227-234.
,[46] On the computation of electronic correlation energies within the local approach. J. Chem. Phys. 73 (1980) 4548-4561.
and ,[47] Linked-cluster expansion for Jastrow-type wave functions and its application to the electron-gas problem. Phys. Rev. A 10 (1974) 1333-1344.
,[48] Variational calculation for the electron gas at intermediate densities. Phys. Rev. A 13 (1976) 1200-1208.
,[49] Optimized trial wave functions for quantum Monte Carlo calculations. Phys. Rev. Lett. 60 (1988) 1719-1722.
, and ,[50] Optimized wavefunctions for quantum Monte Carlo studies of atoms and solids. Phys. Rev. B 53 (1996) 9640-9648.
, , , , , , and ,[51] On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98 (2004) 731-759. | Zbl
,[52] Sparse grid spaces for the numerical solution of the electronic Schrödinger equation. Numer. Math. 101 (2005) 381-389. | Zbl
,Cité par Sources :