We discuss best -term approximation spaces for one-electron wavefunctions and reduced density matrices emerging from Hartree-Fock and density functional theory. The approximation spaces for anisotropic wavelet tensor product bases have been recently characterized by Nitsche in terms of tensor product Besov spaces. We have used the norm equivalence of these spaces to weighted spaces of wavelet coefficients to proof that both and are in for all with . Our proof is based on the assumption that the possess an asymptotic smoothness property at the electron-nuclear cusps.
Mots clés : best $N$-term approximation, wavelets, Hartree-Fock method, density functional theory
@article{M2AN_2006__40_1_49_0, author = {Flad, Heinz-J\"urgen and Hackbusch, Wolfgang and Schneider, Reinhold}, title = {Best $N$-term approximation in electronic structure calculations {I.} {One-electron} reduced density matrix}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {49--61}, publisher = {EDP-Sciences}, volume = {40}, number = {1}, year = {2006}, doi = {10.1051/m2an:2006007}, mrnumber = {2223504}, zbl = {1100.81050}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2006007/} }
TY - JOUR AU - Flad, Heinz-Jürgen AU - Hackbusch, Wolfgang AU - Schneider, Reinhold TI - Best $N$-term approximation in electronic structure calculations I. One-electron reduced density matrix JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2006 SP - 49 EP - 61 VL - 40 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2006007/ DO - 10.1051/m2an:2006007 LA - en ID - M2AN_2006__40_1_49_0 ER -
%0 Journal Article %A Flad, Heinz-Jürgen %A Hackbusch, Wolfgang %A Schneider, Reinhold %T Best $N$-term approximation in electronic structure calculations I. One-electron reduced density matrix %J ESAIM: Modélisation mathématique et analyse numérique %D 2006 %P 49-61 %V 40 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2006007/ %R 10.1051/m2an:2006007 %G en %F M2AN_2006__40_1_49_0
Flad, Heinz-Jürgen; Hackbusch, Wolfgang; Schneider, Reinhold. Best $N$-term approximation in electronic structure calculations I. One-electron reduced density matrix. ESAIM: Modélisation mathématique et analyse numérique, Tome 40 (2006) no. 1, pp. 49-61. doi : 10.1051/m2an:2006007. http://www.numdam.org/articles/10.1051/m2an:2006007/
[1] Asymptotics for the approximation of wave functions by exponential sums. J. Approx. Theory 83 (1995) 93-103. | Zbl
,[2] Sparse grids. Acta Numerica 13 (2004) 147-269. | Zbl
and ,[3] Restricted nonlinear approximation. Constr. Approx. 16 (2000) 85-113. | Zbl
, and ,[4] Nonlinear approximation. Acta Numerica 7 (1998) 51-150. | Zbl
,[5] Compression of wavelet decompositions. Amer. J. Math. 114 (1992) 737-785. | Zbl
, and ,[6] Hyperbolic wavelet approximation. Constr. Approx. 14 (1998) 1-26. | Zbl
, and ,[7] Wavelet approximation of correlated wavefunctions. I. Basics. J. Chem. Phys. 116 (2002) 9641-9657.
, , and ,[8] Diagrammatic multiresolution analysis for electron correlations. Phys. Rev. B. 71 (2005) 125115.
, , and ,[9] Wavelet approach to quasi two-dimensional extended many-particle systems. I. supercell Hartree-Fock method. J. Comp. Phys. 205 (2005) 540-566. | Zbl
, , and ,[10] On the regularity of the density of electronic wavefunctions. Contemp. Math. 307 (2002) 143-148. | Zbl
, , and ,[11] The electron density is smooth away from the nuclei. Commun. Math. Phys. 228 (2002) 401-415. | Zbl
, , and ,[12] On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. J. Comp. Phys. 165 (2000) 694-716. | Zbl
and ,[13] Basis-set convergence of the energy in molecular Hartree-Fock calculations. Chem. Phys. Lett. 302 (1999) 437-446.
, , , and ,[14] Multiresolution quantum chemistry: Basic theory and initial applications. J. Chem. Phys. 121 (2004) 11587-11598.
, , , and ,[15] Molecular Electronic-Structure Theory, Wiley, New York (1999).
, and ,[16] Rates of convergence and error estimation formulas for the Rayleigh-Ritz variational method. J. Chem. Phys. 83 (1985) 1173-1196.
,[17] Cusp conditions for eigenfunctions of n-electron systems, Phys. Rev. A 23 (1981) 21-23.
and ,[18] Local properties of Coulombic wave functions. Commun. Math. Phys. 163 (1994) 185-215. | Zbl
, and ,[19] Electron wavefunctions and densities for atoms. Ann. Henri Poincaré 2 (2001) 77-100. | Zbl
, and ,[20] On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10 (1957) 151-177. | Zbl
,[21] Theory of the expansion of wave functions in a Gaussian basis. Int. J. Quantum Chem. 51 (1994) 447-463.
,[22] Rates of convergence of the partial-wave expansions of atomic correlation energies. J. Chem. Phys. 96 (1992) 4484-4508.
and ,[23] The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys. 53 (1977) 185-194.
and ,[24] Wavelet approximation of correlated wavefunctions. II. Hyperbolic wavelets and adaptive approximation schemes. J. Chem. Phys. 117 (2002) 3625-3638.
, , , and ,[25] Best N-term approximation spaces for sparse grids, Research Report No. 2003-11, Seminar für Angewandte Mathematik, ETH Zürich.
,[26] Multiskalen- und Wavelet-Matrixkompression, Teubner, Stuttgart (1998). | MR
,[27] Multiresolution quantum chemistry in multiwavelet basis: Hartree-Fock exchange. J. Chem. Phys. 121 (2004) 6680-6688.
, , , and ,[28] Multiresolution quantum chemistry in multiwavelet basis: Analytic derivatives for Hartree-Fock and density functional theory. J. Chem. Phys. 121 (2004) 2866-2876.
, , , and ,[29] On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98 (2004) 731-759. | Zbl
,[30] Sparse grid spaces for the numerical solution of the electronic Schrödinger equation. Numer. Math. 101 (2005) 381-389. | Zbl
,Cité par Sources :