Linear convergence in the approximation of rank-one convex envelopes
ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 5, pp. 811-820.

A linearly convergent iterative algorithm that approximates the rank-1 convex envelope frc of a given function f:n×m, i.e. the largest function below f which is convex along all rank-1 lines, is established. The proposed algorithm is a modified version of an approximation scheme due to Dolzmann and Walkington.

DOI : 10.1051/m2an:2004040
Classification : 65K10, 74G15, 74G65, 74N99
Mots-clés : nonconvex variational problem, calculus of variations, relaxed variational problems, rank-1 convex envelope, microstructure, iterative algorithm
@article{M2AN_2004__38_5_811_0,
     author = {Bartels, S\"oren},
     title = {Linear convergence in the approximation of rank-one convex envelopes},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {811--820},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {5},
     year = {2004},
     doi = {10.1051/m2an:2004040},
     mrnumber = {2104430},
     zbl = {1083.65058},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an:2004040/}
}
TY  - JOUR
AU  - Bartels, Sören
TI  - Linear convergence in the approximation of rank-one convex envelopes
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2004
SP  - 811
EP  - 820
VL  - 38
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an:2004040/
DO  - 10.1051/m2an:2004040
LA  - en
ID  - M2AN_2004__38_5_811_0
ER  - 
%0 Journal Article
%A Bartels, Sören
%T Linear convergence in the approximation of rank-one convex envelopes
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2004
%P 811-820
%V 38
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an:2004040/
%R 10.1051/m2an:2004040
%G en
%F M2AN_2004__38_5_811_0
Bartels, Sören. Linear convergence in the approximation of rank-one convex envelopes. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 5, pp. 811-820. doi : 10.1051/m2an:2004040. https://www.numdam.org/articles/10.1051/m2an:2004040/

[1] J.M. Ball, A version of the fundamental theorem for Young measures. Partial differential equations and continuum models of phase transitions. M Rascle, D. Serre, M. Slemrod Eds. Lect. Notes Phys. 344 (1989) 207-215. | Zbl

[2] J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 13-52. | Zbl

[3] S. Bartels, Reliable and efficient approximation of polyconvex envelopes. SIAM J. Numer. Anal. (accepted) [Preprints of the DFG Priority Program “Multiscale Problems”, No. 76 (2002) (http://www.mathematik.uni-stuttgart.de/~mehrskalen/)]. | Zbl

[4] S. Bartels, Error estimates for adaptive Young measure approximation in scalar nonconvex variational problems. SIAM J. Numer. Anal. 42 (2004) 505-529. | Zbl

[5] S. Bartels and A. Prohl, Multiscale resolution in the computation of crystalline microstructure. Numer. Math. 96 (2004) 641-660. | Zbl

[6] C. Carstensen and P. Plecháč, Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp. 66 (1997) 997-1026. | Zbl

[7] C. Carstensen and T. Roubíček, Numerical approximation of Young measures in non-convex variational problems. Numer. Math. 84 (2000) 395-414. | Zbl

[8] M. Chipot and S. Müller, Sharp energy estimates for finite element approximations of non-convex problems, in Variations of domain and free boundary problems, in solid mechanics, Solid Mech. Appl. 66 (1997) 317-327.

[9] B. Dacorogna, Direct methods in the calculus of variations. Appl. Math. Sci. 78 (1989). | MR | Zbl

[10] B. Dacorogna and J.-P. Haeberly, Some numerical methods for the study of the convexity notions arising in the calculus of variations. RAIRO Modél. Math. Anal. Numér. 32 (1998) 153-175. | Numdam | Zbl

[11] G. Dolzmann, Numerical computation of rank-one convex envelopes. SIAM J. Numer. Anal. 36 (1999) 1621-1635. | Zbl

[12] G. Dolzmann and N.J. Walkington, Estimates for numerical approximations of rank one convex envelopes. Numer. Math. 85 (2000) 647-663. | Zbl

[13] J.L. Ericksen, Constitutive theory for some constrained elastic crystals. Int. J. Solids Struct. 22 (1986) 951-964. | Zbl

[14] K. Hackl and U. Hoppe, On the calculation of microstructures for inelastic materials using relaxed energies. IUTAM symposium on computational mechanics of solid materials at large strains, C. Miehe Ed., Solid Mech. Appl. 108 (2003) 77-86. | Zbl

[15] R.V. Kohn, The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3 (1991) 193-236. | Zbl

[16] R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems. I.-III. Commun. Pure Appl. Math. 39 (1986) 353-377. | Zbl

[17] M. Kružik, Numerical approach to double well problems. SIAM J. Numer. Anal. 35 (1998) 1833-1849. | Zbl

[18] M. Luskin, On the computation of crystalline microstructure. Acta Numerica 5 (1996) 191-257. | Zbl

[19] C. Miehe and M. Lambrecht, Analysis of micro-structure development in shearbands by energy relaxation of incremental stress potentials: large-strain theory for standard dissipative materials. Internat. J. Numer. Methods Engrg. 58 (2003) 1-41. | Zbl

[20] S. Müller, Variational models for microstructure and phase transitions. Lect. Notes Math. 1713 (1999) 85-210. | Zbl

[21] R.A. Nicolaides, N. Walkington and H. Wang, Numerical methods for a nonconvex optimization problem modeling martensitic microstructure. SIAM J. Sci. Comput. 18 (1997) 1122-1141. | Zbl

[22] T. Roubíček, Relaxation in optimization theory and variational calculus. De Gruyter Series in Nonlinear Analysis Appl. 4 New York (1997). | MR | Zbl

  • Balzani, D.; Köhler, M.; Neumeier, T.; Peter, M. A.; Peterseim, D. Multidimensional rank-one convexification of incremental damage models at finite strains, Computational Mechanics, Volume 73 (2024) no. 1, p. 27 | DOI:10.1007/s00466-023-02354-3
  • Köhler, M.; Neumeier, T.; Peter, M.A.; Peterseim, D.; Balzani, D. Hierarchical rank-one sequence convexification for the relaxation of variational problems with microstructures, Computer Methods in Applied Mechanics and Engineering, Volume 432 (2024), p. 117321 | DOI:10.1016/j.cma.2024.117321
  • Behr, Florian; Dolzmann, Georg; Hackl, Klaus; Jezdan, Ghina Analytical and numerical relaxation results for models in soil mechanics, Continuum Mechanics and Thermodynamics, Volume 35 (2023) no. 5, p. 2019 | DOI:10.1007/s00161-023-01225-9
  • Köhler, Maximilian; Neumeier, Timo; Peterseim, Daniel; Peter, Malte A.; Balzani, Daniel Relaxed Incremental Formulations for Damage at Finite Strains Including Strain Softening, PAMM, Volume 23 (2023) no. 1 | DOI:10.1002/pamm.202200297
  • Köhler, Maximilian; Neumeier, Timo; Melchior, Jan; Peter, Malte A.; Peterseim, Daniel; Balzani, Daniel Adaptive convexification of microsphere-based incremental damage for stress and strain softening at finite strains, Acta Mechanica, Volume 233 (2022) no. 11, p. 4347 | DOI:10.1007/s00707-022-03332-1
  • Li, Wenbo; Nochetto, Ricardo Two-scale methods for convex envelopes, Mathematics of Computation, Volume 91 (2021) no. 333, p. 111 | DOI:10.1090/mcom/3521
  • Martin, Robert J.; Voss, Jendrik; Ghiba, Ionel-Dumitrel; Sander, Oliver; Neff, Patrizio The Quasiconvex Envelope of Conformally Invariant Planar Energy Functions in Isotropic Hyperelasticity, Journal of Nonlinear Science, Volume 30 (2020) no. 6, p. 2885 | DOI:10.1007/s00332-020-09639-4
  • Conti, Sergio; Dolzmann, Georg An adaptive relaxation algorithm for multiscale problems and application to nematic elastomers, Journal of the Mechanics and Physics of Solids, Volume 113 (2018), p. 126 | DOI:10.1016/j.jmps.2018.02.001
  • Oberman, Adam M.; Ruan, Yuanlong A Partial Differential Equation for the Rank One Convex Envelope, Archive for Rational Mechanics and Analysis, Volume 224 (2017) no. 3, p. 955 | DOI:10.1007/s00205-017-1092-5
  • Conti, Sergio; Dolzmann, Georg Analytical and Numerical Tools for Relaxation in Crystal Plasticity, Procedia IUTAM, Volume 20 (2017), p. 56 | DOI:10.1016/j.piutam.2017.03.008
  • Benešová, Barbora; Kružík, Martin Weak Lower Semicontinuity of Integral Functionals and Applications, SIAM Review, Volume 59 (2017) no. 4, p. 703 | DOI:10.1137/16m1060947
  • Bartels, Sören Nonconvexity and Microstructure, Numerical Methods for Nonlinear Partial Differential Equations, Volume 47 (2015), p. 261 | DOI:10.1007/978-3-319-13797-1_9
  • Dolzmann, G. Microstructure and effective behavior of materials, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 93 (2013) no. 1, p. 4 | DOI:10.1002/zamm.201200128
  • Bartels, Sören; Kružík, Martin An Efficient Approach to the Numerical Solution of Rate-Independent Problems with Nonconvex Energies, Multiscale Modeling Simulation, Volume 9 (2011) no. 3, p. 1276 | DOI:10.1137/110821718
  • Carstensen, Carsten; Huth, Robert Towards Effective Simulation of Effective Elastoplastic Evolution, IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media, Volume 11 (2008), p. 41 | DOI:10.1007/978-1-4020-9090-5_4
  • Bartels, Sören; Carstensen, Carsten; Conti, Sergio; Hackl, Klaus; Hoppe, Ulrich; Orlando, Antonio Relaxation and the Computation of Effective Energies and Microstructures in Solid Mechanics, Analysis, Modeling and Simulation of Multiscale Problems (2006), p. 197 | DOI:10.1007/3-540-35657-6_8
  • Bartels, Sören Reliable and Efficient Approximation of Polyconvex Envelopes, SIAM Journal on Numerical Analysis, Volume 43 (2005) no. 1, p. 363 | DOI:10.1137/s0036142903428840

Cité par 17 documents. Sources : Crossref