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LINEAR CONVERGENCE IN THE APPROXIMATION
OF RANK-ONE CONVEX ENVELOPES

Sören Bartels
1

Abstract. A linearly convergent iterative algorithm that approximates the rank-1 convex envelope frc

of a given function f : R
n×m → R, i.e. the largest function below f which is convex along all rank-1

lines, is established. The proposed algorithm is a modified version of an approximation scheme due to

Dolzmann and Walkington.

Mathematics Subject Classification. 65K10, 74G15, 74G65, 74N99.

Received: May 27, 2003.

1. Introduction

A well known mathematical model of phase transitions in crystalline solids due to [2] allowing for microstruc-
ture reads

(M) Minimize I(u) :=
∫

Ω

f(x, u,∇u) dx among u ∈ A

for a bounded Lipschitz domain Ω ⊆ R
n, a (non-convex) continuous energy density f : R

n × R
m × R

n×m →
R satisfying p-growth conditions for some parameter p ≥ 1, and a space of admissible deformations A ⊆
W 1,p(Ω; Rm) containing boundary conditions. It is well established that minimizing sequences for I develop
oscillations in the gradient and that their weak limits do not minimize I (see e.g. [9, 20, 22]). Together with a
Young measure generated by a minimizing sequence in the sense of [1], weak limits contain the most relevant
information about microscopic and macroscopic effects. Moreover, each weak limit of a minimizing sequence is
a solution of a relaxed problem in which f is replaced by its quasiconvex envelope f qc (see e.g. [9, 20, 22]). In
general, it is not possible to compute f qc explicitly or even approximately in order to define the relaxed problem.
Therefore, it is desirable to know upper and lower bounds for f qc and it is the aim of this paper to establish
an algorithm that computes an upper bound for f qc with optimal orders of convergence. Approximated upper
bounds have been employed in [14, 17, 19] for effective numerical simulations of inelastic and plastic materials.
The approach of simultaneous relaxation and approximation of non-convex variational problems results in
discrete problems with two scales that reflect microscopic and macroscopic effects.

Error estimates for the approximation of (M) are available for the case that either A contains affine boundary
conditions on ∂Ω defined through certain F ∈ R

n×m (see e.g. [5, 8, 18]) or f qc is convex (see e.g. [4, 6, 7]).
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In the first case theoretical convergence rates for the approximation of (M) and thereby of f qc(·, ·, F ) are
stated but, owing to mesh-size dependent oscillations, those approaches cannot be expected to lead to efficient
numerical algorithms. In the second case efficient algorithms are available but the proposed numerical schemes
are restricted to scalar problems. A numerical scheme that checks for different notions of convexity for a class
of functions can be found in [10].

An algorithm that computes an upper bound, i.e. the rank-1 convex envelope [9], for f qc is given in [11,12].
By choosing a larger set of discrete rank-1 matrices and allowing interpolated values we state a version of
that algorithm which leads to improved convergence rates under the cost of a slightly increased numerical
effort. Thereby, we efficiently solve (M) for a large class of functions f and affine boundary data on ∂Ω. The
combination of the presented result with an approximation scheme for a lower bound for f qc recently given in
[3] further allows to numerically check for equality of rank-1 convex and polyconvex envelopes and thereby to
detect f qc.

The rest of the paper is organized as follows. We present the iterative algorithm and the approximation
result in Section 2. Some notation and preliminaries are stated in Section 3 and lead to the proof of the
main result which is given in Section 4. Numerical experiments are reported on in Section 5. In Section 6 we
numerically check for equality of the rank-1 convex and the polyconvex envelope of a two-dimensional version
of the Ericksen-James energy density.

2. Iterative algorithm and main results

Throughout this article we suppose that f in (M) is independent of x and u, i.e. f : R
n×m → R, is

continuous, and satisfies, for certain cf > 0, c′f ≥ 0, p > 0, and all F ∈ R
n×m,

f(F ) ≥ cf |F |p − c′f . (2.1)

Due to [16] the rank-1 convex envelope f rc can be defined iteratively by setting f (0) := f and, for k ≥ 1 and
F ∈ R

n×m,

f (k)(F ) := inf
{
θf (k−1)(A) + (1 − θ)f (k−1)(B) : θ ∈ [0, 1],

A, B ∈ R
n×m, θA + (1 − θ)B = F, rank(A − B) = 1

}
.

Then, f rc is the pointwise limit of f (k) for k → ∞. The idea for the approximation of f rc is to choose a discrete
set of rank-1 matrices ad ⊗ bd and then to approximate f (k) in certain nodes employing the finite set of rank-1
matrices. We choose the set of nodes Nd,r := dZ

n×m ∩ Br(0) for 0 < d ≤ r, let ωd,r := convNd,r, and define

R1
d,r :=

{
(ad, bd) ∈ dZ

n × dZ
m : (1 − 2nd)1/2 ≤ |ad| ≤ 1 + nd,

|bd| ≤ 2
√

nm r + md
}
.

We then let f
(0)
d,r := Id,rf be the nodal interpolant of f in ωd,r and solve, for k ≥ 1 and F ∈ Nd,r, (with

f
(k−1)
d,r := ∞ in R

n×m \ ωd,r and nodal interpolation of f
(k−1)
d,r in ωd,r) the linear optimization problem

f
(k)
d,r (F ) := inf

(ad,bd)∈R1
d,r

inf

{∑
�∈Z

θ�f
(k−1)
d,r (F + d�ad ⊗ bd) :

θ� ≥ 0,
∑
�∈Z

θ� = 1,
∑
�∈Z

θ�� = 0

}
. (2.2)
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Thereby, we obtain the following approximation result.
Theorem A. There holds f

(k)
d,r ≥ f rc in ωd,r. For c1 := 1+

(
2
√

nm r+(1+d)
√

m(2nr+1+nd)
)

set r̃ := r−c1d

and suppose that f rc = f in R
n×m \ Br̃(0). If f (L) = f rc for some L ≥ 0 there holds

‖f (L)
d,r − f rc‖L∞(ωd,r) ≤ (c2L +

√
nm) d |f |Lip(B3r(0))

with c2 := 2
(
6
√

nm r + (1 + d)
√

m(2nr + 1 + nd)
)

+
√

nm.

The computational effort to calculate f
(k)
d,r is of order k(r/d)nm+n+m+1 while the cheaper algorithm of Dolz-

mann and Walkington requires O(k(r/d)nm+n/3+m/3+1) operations but leads to an approximation error O(d1/3).
There is no a priori bound for L available but there holds f rc = f (L) if and only if f (L) = f (L+1) which mo-
tivates to stop the discrete iterative process (2.2) if |f (k+1)

d,r − f
(k)
d,r |L∞(ωd,r) ≤ d. The condition f rc = f in

R
n×m \Br̃(0) is not always true and hard to verify in practice. We stress however that even if we do not know

L and r̃ in Theorem A we have f
(k)
d,r (F ) ≥ f rc(F ) for all k ≥ 0, r ≥ d > 0, and F ∈ ωd,r which is important if

one is interested in a reliable upper bound for f qc in order to check for equality with a lower bound. A similar
approximation result to Theorem A can be obtained if Nd,r is replaced by a non-uniform set of nodes but then
it is not clear whether f

(k)
d,r is a reliable upper bound for f rc in ωd,r.

3. Preliminaries

Throughout this article, | · | denotes the Frobenius norm of a vector or a matrix in R
n, R

m, or R
n×m, e.g.

for A ∈ R
n×m with entries Ajk ∈ R for j = 1, ..., n and k = 1, ..., m we have

|A|2 =
n∑

j=1

m∑
k=1

A2
jk.

The maximum norm of a vector or a matrix is denoted by | · |∞, e.g. |A|∞ = maxj,k |Ajk|; there holds
|v|∞ ≤ |v| ≤

√
�|v|∞ for all v ∈ R

�.
For s ∈ R the integer �s
 ∈ Z is defined by �s
 := max{� ∈ Z : � ≤ s}. For vectors the operator �·
 is defined

by applying �·
 to each component.
Given r > 0 and G ∈ R

� we set Br(G) := {A ∈ R
� : |A − G|∞ < r} and, for a positive parameter d > 0 with

d ≤ r, define

Nd,r := dZ
n×m ∩ Br(0) ⊆ R

n×m.

We let ωd,r be the interior of the union of all closed (nm)-dimensional cubes Q ⊆ Br(0) with vertices in Nd,r,
and define a uniform triangulation Td,r of ωd,r by setting

Td,r :=
{
Q ⊆ ωd,r : Q is a closed cube with vertices in Nd,r and edges of length d

}
.

Note that each Q ∈ Td,r is the convex hull of 2nm nodes M1, ..., M2nm ∈ Nd,r, i.e. Q = conv {M1, ..., M2nm}.
To Td,r we associate the set of continuous, Td,r-elementwise (nm)-linear functions

S1(Td,r) :=
{
vh ∈ C(ωd,r) : ∀Q ∈ Td,r, vh|Q is a polynomial of partial degree ≤ 1

}
.

The nodal interpolation operator Id,r on Td,r is for v ∈ C(ωd,r) defined by

Id,rv :=
∑

A∈Nd,r

v(A)ϕA.
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Here, for each A ∈ Nd,r the function ϕA ∈ S1(Td,r) satisfies ϕA(A) = 1 and ϕA(B) = 0 for all B ∈ Nd,r \ {A}.
There holds

‖Id,rg − g‖L∞(ωd,r) ≤ d
√

nm |g|Lip(Br(0)) (3.1)

for locally Lipschitz continuous functions g : R
n×m → R; |g|Lip(Br(0)) denotes the Lipschitz constant of g on

Br(0) and will be abbreviated by |g|Lip,r.

4. Proof of Theorem A

This section is devoted to the proof of Theorem A. The first lemma gives an estimate for the local Lipschitz
constant of f (k).

Lemma 4.1. Suppose that f rc = f in R
n×m \ Br(0) and f is locally Lipschitz continuous. Then, for all k ≥ 0

the function f (k) is Lipschitz continuous on Br(0) with Lipschitz constant |f (k)|Lip,r ≤ |f |Lip,3r.

Proof. Let k ≥ 0 and F, G ∈ Br(0). Without loss of generality assume f (k)(F ) ≥ f (k)(G) and let ε > 0. By
assumption on f and definition of f (k)(G) there exist Aι ∈ Br(0) and θι ≥ 0, ι = 1, ..., 2k, (which satisfy the
condition (H2k) of [9] with

∑2k

ι=1 θιAι = G) such that
∑2k

ι=1 θι = 1,
∑2k

ι=1 θιT (Aι) = T (G), and

2k∑
ι=1

θιf(Aι) ≤ f (k)(G) + ε.

For each ι = 1, ..., 2k define Ãι := (F − G) + Aι. Then, (since Ãι, ι = 1, ..., 2k, satisfy the condition (H2k) of
[9] with

∑2k

ι=1 θιÃι = F ) there holds f (k)(F ) ≤
∑2k

ι=1 θιf(Ãι). Moreover, Ãι ∈ B3r(0), Ãι − Aι = F − G, for
ι = 1, ..., 2k and hence

|f (k)(F )−f (k)(G)| = f (k)(F ) − f (k)(G) ≤
2k∑

ι=1

θιf(Ãι) − f (k)(G)

≤
2k∑
ι=1

θι

(
f(Ãι) − f(Aι)

)
+ ε ≤ |f |Lip,3r|F − G| + ε. �

Remark 4.1. (i) As a consequence of Carathéodory’s theorem (see e.g. [22]), the second minimum in (2.2) can
be attained by a convex combination of two points, i.e. there exist �1, �2 ∈ Z such that F + d�jad ⊗ bd ∈ ωd,r,
j = 1, 2, and θ�1 , θ�2 ≥ 0, θ�1 + θ�2 = 1, θ�1�1 + θ�2�2 = 0, such that, for the minimizing (θ� : � ∈ Z), there holds

f
(k+1)
d,r (F ) =

∑
�∈Z

θ�f
(k)
d,r (F + d�ad ⊗ bd)

= θ�1f
(k)
d,r (F + d�1ad ⊗ bd) + θ�2f

(k)
d,r (F + d�2ad ⊗ bd).

(ii) If A, B ∈ R
n×m with rank(A − B) = 1 then there exist a ∈ R

n and b ∈ R
m such that |a| = 1 and

A − B = a ⊗ b.

Proposition 4.1. Let k ≥ 0 and suppose that for all ε > 0 and all F ∈ ωd,r ∩ Br−c1d(0) there exist A, B ∈
ωd,r ∩ Br−c1d(0), � ∈ [0, 1] such that rank(A − B) = 1, F = �A + (1 − �)B, and

�f (k)(A) + (1 − �)f (k)(B) ≤ f (k+1)(F ) + ε.
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Assume that for all F ∈ ωd,r \ Br−c1d(0) there holds f (k+1)(F ) = f (k)(F ). Then

‖f (k+1)
d,r − f (k+1)‖L∞(ωd,r) ≤ dc2|f |Lip,3r + ‖f (k)

d,r − f (k)‖L∞(ωd,r).

Proof. Let F ∈ Nd,r and set

f̃
(k+1)
d,r (F ) := min

(ad,bd)∈R1
d,r

min

{ ∑
�∈Z:F+d�ad⊗bd∈ωd,r

θ�f
(k)(F + d�ad ⊗ bd) :

θ� ≥ 0,
∑

θ� = 1,
∑

θ�� = 0

}
.

Let (ãd, b̃d) ∈ R1
d,r, �̃1, �̃2, θ̃�̃1

, θ̃�̃2
be minimizing in the definition of f̃

(k+1)
d,r (F ), i.e.

f̃
(k+1)
d,r (F ) = θ̃�̃1

f (k)(F + d�̃1ãd ⊗ b̃d) + θ̃�̃2
f (k)(F + d�̃2ãd ⊗ b̃d).

Similarly, let (a′
d, b

′
d) ∈ R1

d,r, �′1, �
′
2 ∈ Z, θ′�′1 , θ

′
�′2

, be minimizing in the definition of f
(k+1)
d,r (F ), i.e.

f
(k+1)
d,r (F ) = θ′�′1f

(k)
d,r (F + d�′1a

′
d ⊗ b′d) + θ′�′2f

(k)
d,r (F + d�′2a

′
d ⊗ b′d).

Assume that f̃
(k+1)
d,r (F ) ≤ f

(k+1)
d,r (F ). Then there holds, since ãd, b̃d, �̃1, �̃2, θ̃�̃1

, and θ̃�̃2
are feasible to define

f
(k+1)
d,r (F ),

|f̃ (k+1)
d,r (F ) − f

(k+1)
d,r (F )| = f

(k+1)
d,r (F ) − f̃

(k+1)
d,r (F )

≤ f
(k)
d,r (F + d�̃1ãd ⊗ b̃d) + θ̃�̃2

f
(k)
d,r (F + d�̃2ãd ⊗ b̃d)

− θ̃�̃1
f (k)(F + d�̃1ãd ⊗ b̃d) − θ̃�̃2

f (k)(F + d�̃2ãd ⊗ b̃d)

≤ ‖f (k)
d,r − f (k)‖L∞(ωd,r).

Conversely, if f
(k+1)
d,r (F ) < f̃

(k+1)
d,r (F ) there holds

|f̃ (k+1)
d,r (F ) − f

(k+1)
d,r (F )| = f̃

(k+1)
d,r (F ) − f

(k+1)
d,r (F )

≤ θ′�′1f
(k)(F + d�′1a

′
d ⊗ b′d) + θ′�′2f

(k)(F + d�′2a
′
d ⊗ b′d)

− θ′�′1f
(k)
d,r (F + d�′1a

′
d ⊗ b′d) − θ′�′2f

(k)
d,r (F + d�′2a

′
d ⊗ b′d)

≤ ‖f (k)
d,r − f (k)‖L∞(ωd,r).

In either case we have

|f̃ (k+1)
d,r (F ) − f

(k+1)
d,r (F )| ≤ ‖f (k)

d,r − f (k)‖L∞(ωd,r). (4.1)

We now estimate |f (k+1)(F )− f̃
(k+1)
d,r (F )|. Assume first that F ∈ ωd,r \Br−c1d(0) so that f (k+1)(F ) = f (k)(F ).

Then, since f (k+1)(F ) ≤ f̃
(k+1)
d,r (F ) ≤ f (k)(F ) we deduce |f (k+1)(F ) − f̃

(k+1)
d,r (F )| = 0. Suppose now that
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F ∈ ωd,r ∩ Br−c1d(0) and set ε := dc2|f (k)|Lip,r/2. Let a ∈ R
n, |a| = 1, b ∈ R

m, A, B ∈ ωd,r ∩ Br−c1d(0),
B − A = a ⊗ b, and � ∈ [0, 1] be such that F = �A + (1 − �)B and

�f (k)(A) + (1 − �)f (k)(B) ≤ f (k+1)(F ) + ε.

We set
ad := d�a/d
, bd := d�b/d
,

and
�1 := −�(1 − �)/d
, �2 := ��/d
.

Noting that A = F − (1 − �)a ⊗ b and inserting �1da ⊗ b we infer

|A − (F + �1dad ⊗ bd)| = |(1 − �)a ⊗ b + �1dad ⊗ bd| ≤ |
(
(1 − �) + �1d

)
a ⊗ b| + |�1d(a ⊗ b − ad ⊗ bd)|.

The definition of �1 and |a| = 1 prove

|
(
(1 − �) + �1d

)
a ⊗ b| ≤ d|b|.

We use |d�1| ≤ 1 + d, insert ad ⊗ b, and employ |a − ad| ≤
√

nd, |b − bd| ≤
√

md, to verify

|�1d(a ⊗ b − ad ⊗ bd)| ≤ (1 + d)|(a − ad) ⊗ b| + (1 + d)|ad ⊗ (b − bd)|
≤ d(1 + d)(

√
n|b| +

√
m|ad|).

Since for the components ad,j , j = 1, ..., n, of ad and aj , j = 1, ..., n, of a we have aj − d ≤ ad,j ≤ aj and since
|aj | ≤ 1 there holds

1 − 2nd ≤
n∑

j=1

a2
d,j ≤ (1 + nd)2.

Since |b| = |a⊗b| = |A−B| ≤ 2
√

nmr we have |bd| ≤ 2
√

nm r+md. The combination of the previous estimates
verifies

|A − (F + �1dad ⊗ bd)| ≤ d
(
2
√

nm r + (1 + d)
√

m(2nr + 1 + nd)
)

=: dc3

and the same arguments prove

|B − (F + �2dad ⊗ bd)| ≤ dc3.

By assumption on A and definition of c1 = 1 + c3 we have

|F + �1dad ⊗ bd|∞ ≤ |A|∞ + |A − (F + �1dad ⊗ bd)|
≤ r − c1d + dc3 = r − d

and this implies F + �1dad ⊗ bd ∈ ωd,r. Similarly, we have F + �2dad ⊗ bd ∈ ωd,r.
If �1 = �2 = 0 we set θ�1 := � and θ�2 := (1− �). Otherwise, we define θ�1 := �2/(|�1|+ �2) and θ�2 := 1− θ�1 .

Note that (1 − �) ≤ d|�1| ≤ (1 − �) + d and � − d ≤ d�2 ≤ �. If � ≤ θ�1 and if d ≤ 1/2 then

|� − θ�1 | = θ�1 − � =
�2

|�1| + �2
− � ≤ �

1 − d
− � =

d

1 − d
≤ 2d.
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If d > 1/2 we simply estimate |� − θ�1 | ≤ 1 ≤ 2d. Similarly, if θ�1 ≤ � there holds

|� − θ�1 | = � − θ�1 ≤ � − � − d

� + (1 − �) + d
≤ 2d.

Finally, observe that θ�2 = |�1|/(|�1| + �2) implies

θ�1�1 + θ�2�2 = 0.

Noting that f (k+1)(F ) ≤ f̃
(k+1)
d,r (F ) and that ad, bd, �1, �2, θ�1 , θ�2 are feasible in the definition of f̃

(k+1)
d,r (F ) we

observe

|f (k+1)(F ) − f̃
(k+1)
d,r (F )| = f̃

(k+1)
d,r (F ) − f (k+1)(F )

≤ θ�1f
(k)(F + �1dad ⊗ bd) + θ�2f

(k)(F + �2dad ⊗ bd)

− �f (k)(A) − (1 − �)f (k)(B) + ε.

Inserting θ�1f
(k)(A) and θ�2f

(k)(B), using θ�2 − (1 − �) = −(θ�1 − �), and employing |B − A| ≤ 2
√

nm r we
verify

|f (k+1)(F ) − f̃
(k+1)
d,r (F )| ≤ θ�1

(
f (k)(F + �1dad ⊗ bd) − f (k)(A)

)
+ θ�2

(
f (k)(F + �2dad ⊗ bd) − f (k)(B)

)
+ (θ�1 − �)

(
f (k)(A) − f (k)(B)

)
+ ε

≤ dc3|f (k)|Lip,r + 2d 2
√

nmr
|f (k)(A) − f (k)(B)|

|A − B| + ε

≤ d(c3 + 4
√

nm r)|f (k)|Lip,r + ε.

The triangle inequality, the choice of ε, (4.1), and Lemma 4.1 conclude the proof. �

The following lemma is due to [11].

Lemma 4.2. Suppose that f rc = f in R
n×m\Br−c1d(0). Then the conditions of Proposition 4.1 are satisfied. �

The next proposition shows that f
(k)
d,r is a reliable upper bound for f rc.

Proposition 4.2. For all k ≥ 0, r ≥ d > 0, and all G ∈ ωd,r there holds f
(k)
d,r (G) ≥ f rc(G).

Proof. The proof follows from the definition of f
(k)
d,r (G), the fact that nodal basis functions (on symmetric grids)

evaluated at some F ∈ Q ∈ Td,r define a rank-1 decomposition of F (see [3] Lem. 3.1), and the characterization
of f rc through the condition (HN ) of [9]. �

Proof of Theorem A. The first assertion is Proposition 4.2. The error estimate follows from Lemma 4.2 and an
induction over � = 0, ..., L with Proposition 4.1. �

5. Numerical experiments

In this section we report on the practical performance of the following Algorithm (Arc
r,d) which realizes (2.2).

Input are the parameters r ≥ d > 0 and the function f .
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Algorithm (Arc
r,d).

(a) Set f
(0)
d,r := Id,rf and k := 1.

(b) Set f
(k)
d,r := f

(k−1)
d,r , R := R1

d,r, and N := Nd,r.
(c) Choose F ∈ N and set N := N \ {F}.
(d) Choose (ad, bd) ∈ R and set R := R \ {(ad, bd)}.
(e) Solve the linear optimization problem

m := min

{ ∑
�∈Z:F+d�ad⊗bd∈ωd,r

θ�f
(k−1)
d,r (F + d�ad ⊗ bd) : θ� ≥ 0,

∑
�

θ� = 1,
∑

�

θ�� = 0

}

and set f
(k)
d,r (F ) := min{m, f

(k)
d,r (F )}.

(f) If R �= ∅ go to (d).
(g) If N �= ∅ go to (c).
(h) If ‖f (k)

d,r − f
(k−1)
d,r ‖L∞(Br(0)) > d set k := k + 1 and go to (b).

(j) Stop.

Remark 5.1. If we are only interested in an upper bound for f rc and hence for f qc in ωd,r we may stop the
iteration in Step (h) of the algorithm if k = M for some given M ≥ 0.

Example 5.1 [9]. For n = m = 2 and F ∈ R
2×2 let

f(F ) := (|F |2 − 1)2.

For F ∈ R
2×2 there holds

f rc(F ) =
{

(|F |2 − 1)2 for |F | ≥ 1,

0 for |F | ≤ 1.

Example 5.2 [12, 15]. For n = m = 2,

A1 :=
(

5/4 0
0 3/4

)
and A2 :=

(
3
√

8/8 3/8
−5/8 5

√
3/8

)

and F ∈ R
2×2 let

f(F ) :=
1
2

min
{
|F − A1|2, |F − A2|2

}
.

Then, f rc is for F ∈ R
2×2 given by

f rc(F ) =




f1(F ) for f1(F ) − f2(F ) ≤ −λ/2,
f2(F ) −

(
f2(F ) − f1(F ) + λ/2

)
/(2λ)

for |f1(F ) − f2(F )| ≤ λ/2,
f2(F ), for f1(F ) − f2(F ) ≥ λ/2,

where fj(F ) = |F − Aj |2/2, j = 1, 2, and λ = |A1 − A2|.

Example 5.3 [11, 16]. For n = m = 2 and F ∈ R
2×2 let

f(F ) :=
{

1 + |F |2 for |F | ≥
√

2 − 1,

2
√

2|F | for |F | ≤
√

2 − 1.
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Letting �(F ) :=
√
|F |2 + 2| detF | for F ∈ R

2×2 there holds

f rc(F ) =
{

1 + |F |2 for �(F ) ≥ 1,
2(�(F ) − | detF |) for �(F ) ≤ 1.

Linear convergence has been observed in [12] for Examples 5.2 and 5.3 for a related algorithm with a smaller
set of discrete rank-one connections, i.e. with a small set R′ (which may be regarded as a subset of R1

d,r) instead
of R1

d,r in Algorithm (Arc
r,d). For the parameters r = 2 and d = 1, 1/2, 1/4 we obtained a maximal error in the

nodes Nd,r ∩Br′(0) for r′ = 2, 1, 2 in Examples 5.1, 5.2, 5.3, respectively, as displayed in Table 1. The table also
displays the final iteration level k, i.e. the smallest positive integer k for which ‖f (k)

d,r − f
(k+1)
d,r ‖L∞(Br(0)) ≤ d.

Note that f = f rc in R
2×2 \ B2(0) in Examples 5.1 and 5.3 so that we used r′ = 2 in those examples. The

condition f = f rc in the complement of some compact set is not satisfied in Example 5.2. The argumentation
in [12] shows however that we can expect convergence in B1(0) so that we chose r′ = 1 to compute an error in
that example. The displayed error e is part of an upper bound for ‖f (k)

d,r − f rc‖L∞(Br′ (0)) since

‖f (k)
d,r − f rc‖L∞(Br′ (0)) ≤ e + ‖f rc − Id,rf

rc‖L∞(Br′ (0))

≤ e + d
√

nm‖f rc‖Lip,r

and the sum on the right-hand side converges linearly in all examples. We did not run the algorithm for smaller
values of d since the expected CPU time (for our implementation in C) was about 1000 hours for d = 1/8 in all
examples.

Table 1. Error e = maxF∈Nd,r′ |f
(k)
d,r (F )−f rc(F )| in Examples 5.1, 5.2, and 5.3 for r′ = 2, 1, 2,

respectively, and termination level k for d = 1, 1/2, 1/4 and r = 2.

d e and k in Ex. 5.1 e and k in Ex. 5.2 e and k in Ex. 5.3
1 0.000 001 (k = 2) 0.125 150 (k = 1) 0.000 001 (k = 1)

1/2 0.000 001 (k = 2) 0.075 128 (k = 1) 0.085 786 (k = 1)
1/4 0.003 906 (k = 2) 0.022 229 (k = 1) 0.043 861 (k = 3)

6. Numerical study of a 2D Erickson-James energy density

A reliable and efficient algorithm that approximates a lower bound for f qc, i.e. the polyconvex envelope fpc

(see e.g. [9]), has recently been designed and analyzed in [3]. In combination with the results of this article one
can therefore numerically check for equality of f rc and fpc in order to characterize f qc. We numerically study
a two-dimensional version of the Erickson-James energy density [13].

Example 6.1 [21]. Given parameters δ, γ > 0, k1, k2, k3 > 0, and letting

C =
(

C11 C12

C21 C22

)
:= FT F

for F ∈ R
2×2, define

f(F ) := k1(C11 + C22 − δ − γ)2 + k2C
2
12 + k3(C11 − δ)2(C22 − δ)2.

For the numerical experiment we set k1 := 1, k2 := 0.3, k3 := 1, and δ := 1.1, γ := 0.9.
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We employed the algorithm of [3] to compute fpc
1/8,1/2 as an approximation of fpc in the nodes of N1/4,1/2 with

an accuracy O(1/82). Moreover, we used algorithm (Arc
r,d) with r = 2 and d = 1/4 to obtain an approximation

of f rc with an error of order O(1/4) on B1/2(0) (presuming that the conditions of Theorem A are satisfied).
Thereby, we found

max
F∈N1/4,1/2

|fpc
1/8,1/2(F ) − f

(4)
1/4,2(F )| ≤ 0.000 897.

From this very small distance we may conjecture that fpc = f rc in B1/2(0) for f as in Example 6.1. For a final
conclusion one would however have to consider smaller discretization parameters.
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