This paper analyses the implementation of the generalized finite differences method for the HJB equation of stochastic control, introduced by two of the authors in [Bonnans and Zidani, SIAM J. Numer. Anal. 41 (2003) 1008-1021]. The computation of coefficients needs to solve at each point of the grid (and for each control) a linear programming problem. We show here that, for two dimensional problems, this linear programming problem can be solved in
Mots-clés : stochastic control, finite differences, viscosity solutions, consistency, HJB equation, Stern-Brocot tree
@article{M2AN_2004__38_4_723_0, author = {Bonnans, J. Fr\'ed\'eric and Ottenwaelter, \'Elisabeth and Zidani, Housnaa}, title = {A fast algorithm for the two dimensional {HJB} equation of stochastic control}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {723--735}, publisher = {EDP-Sciences}, volume = {38}, number = {4}, year = {2004}, doi = {10.1051/m2an:2004034}, mrnumber = {2087732}, zbl = {1130.93433}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an:2004034/} }
TY - JOUR AU - Bonnans, J. Frédéric AU - Ottenwaelter, Élisabeth AU - Zidani, Housnaa TI - A fast algorithm for the two dimensional HJB equation of stochastic control JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 723 EP - 735 VL - 38 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2004034/ DO - 10.1051/m2an:2004034 LA - en ID - M2AN_2004__38_4_723_0 ER -
%0 Journal Article %A Bonnans, J. Frédéric %A Ottenwaelter, Élisabeth %A Zidani, Housnaa %T A fast algorithm for the two dimensional HJB equation of stochastic control %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 723-735 %V 38 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an:2004034/ %R 10.1051/m2an:2004034 %G en %F M2AN_2004__38_4_723_0
Bonnans, J. Frédéric; Ottenwaelter, Élisabeth; Zidani, Housnaa. A fast algorithm for the two dimensional HJB equation of stochastic control. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 4, pp. 723-735. doi : 10.1051/m2an:2004034. https://www.numdam.org/articles/10.1051/m2an:2004034/
[1] On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations. ESAIM: M2AN 36 (2002) 33-54. | Numdam | Zbl
and ,[2] Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations (to appear). | MR | Zbl
and ,[3] Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Analysis 4 (1991) 271-283. | Zbl
and ,[4] Consistency of generalized finite difference schemes for the stochastic HJB equation. SIAM J. Numer. Anal. 41 (2003) 1008-1021. | Zbl
and ,[5] A fast algorithm for the two dimensional HJB equation of stochastic control. Technical report, INRIA (2004). Rapport de Recherche 5078.
, and ,[6] An approximation scheme for the optimal control of diffusion processes. RAIRO Modél. Math. Anal. Numér. 29 (1995) 97-122. | Numdam | Zbl
and ,[7] Controlled Markov processes and viscosity solutions. Springer, New York (1993). | MR | Zbl
and ,[8] Concrete Mathematics, A Foundation For Computer Science. Addison-Wesley, Reading, MA (1994). Second edition. | MR | Zbl
, and ,[9] Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations. J. Differ. Equations 183 (2002) 497-525. | Zbl
and ,[10] On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients. Probab. Theory Related Fields 117 (2000) 1-16. | Zbl
,[11] Probability methods for approximations in stochastic control and for elliptic equations. Academic Press, New York (1977). Math. Sci. Engrg. 129. | MR | Zbl
,[12] Numerical methods for stochastic control problems in continuous time. Springer, New York, Appl. Math. 24 (2001). Second edition. | MR | Zbl
and ,[13] Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. Part 2: Viscosity solutions and uniqueness. Comm. Partial Differential Equations 8 (1983) 1229-1276. | Zbl
,[14] Approximation numérique des équations de Hamilton-Jacobi-Bellman. RAIRO Anal. Numér. 14 (1980) 369-393. | Numdam | Zbl
and ,[15] Some estimates for finite difference approximations. SIAM J. Control Optim. 27 (1989) 579-607. | Zbl
,Cité par Sources :