A fast algorithm for the two dimensional HJB equation of stochastic control
ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 4, pp. 723-735.

This paper analyses the implementation of the generalized finite differences method for the HJB equation of stochastic control, introduced by two of the authors in [Bonnans and Zidani, SIAM J. Numer. Anal. 41 (2003) 1008-1021]. The computation of coefficients needs to solve at each point of the grid (and for each control) a linear programming problem. We show here that, for two dimensional problems, this linear programming problem can be solved in O(pmax) operations, where pmax is the size of the stencil. The method is based on a walk on the Stern-Brocot tree, and on the related filling of the set of positive semidefinite matrices of size two.

DOI : 10.1051/m2an:2004034
Classification : 49L99, 93E20
Mots-clés : stochastic control, finite differences, viscosity solutions, consistency, HJB equation, Stern-Brocot tree
@article{M2AN_2004__38_4_723_0,
     author = {Bonnans, J. Fr\'ed\'eric and Ottenwaelter, \'Elisabeth and Zidani, Housnaa},
     title = {A fast algorithm for the two dimensional {HJB} equation of stochastic control},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {723--735},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {4},
     year = {2004},
     doi = {10.1051/m2an:2004034},
     mrnumber = {2087732},
     zbl = {1130.93433},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an:2004034/}
}
TY  - JOUR
AU  - Bonnans, J. Frédéric
AU  - Ottenwaelter, Élisabeth
AU  - Zidani, Housnaa
TI  - A fast algorithm for the two dimensional HJB equation of stochastic control
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2004
SP  - 723
EP  - 735
VL  - 38
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an:2004034/
DO  - 10.1051/m2an:2004034
LA  - en
ID  - M2AN_2004__38_4_723_0
ER  - 
%0 Journal Article
%A Bonnans, J. Frédéric
%A Ottenwaelter, Élisabeth
%A Zidani, Housnaa
%T A fast algorithm for the two dimensional HJB equation of stochastic control
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2004
%P 723-735
%V 38
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an:2004034/
%R 10.1051/m2an:2004034
%G en
%F M2AN_2004__38_4_723_0
Bonnans, J. Frédéric; Ottenwaelter, Élisabeth; Zidani, Housnaa. A fast algorithm for the two dimensional HJB equation of stochastic control. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 4, pp. 723-735. doi : 10.1051/m2an:2004034. https://www.numdam.org/articles/10.1051/m2an:2004034/

[1] G. Barles and E.R. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations. ESAIM: M2AN 36 (2002) 33-54. | Numdam | Zbl

[2] G. Barles and E.R. Jakobsen, Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations (to appear). | MR | Zbl

[3] G. Barles and P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Analysis 4 (1991) 271-283. | Zbl

[4] J.F. Bonnans and H. Zidani, Consistency of generalized finite difference schemes for the stochastic HJB equation. SIAM J. Numer. Anal. 41 (2003) 1008-1021. | Zbl

[5] J.F. Bonnans, E. Ottenwaelter and H. Zidani, A fast algorithm for the two dimensional HJB equation of stochastic control. Technical report, INRIA (2004). Rapport de Recherche 5078.

[6] F. Camilli and M. Falcone, An approximation scheme for the optimal control of diffusion processes. RAIRO Modél. Math. Anal. Numér. 29 (1995) 97-122. | Numdam | Zbl

[7] W.H. Fleming and H.M. Soner, Controlled Markov processes and viscosity solutions. Springer, New York (1993). | MR | Zbl

[8] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics, A Foundation For Computer Science. Addison-Wesley, Reading, MA (1994). Second edition. | MR | Zbl

[9] E.R. Jakobsen and K.H. Karlsen, Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations. J. Differ. Equations 183 (2002) 497-525. | Zbl

[10] N.V. Krylov, On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients. Probab. Theory Related Fields 117 (2000) 1-16. | Zbl

[11] H.J. Kushner, Probability methods for approximations in stochastic control and for elliptic equations. Academic Press, New York (1977). Math. Sci. Engrg. 129. | MR | Zbl

[12] H.J. Kushner and P.G. Dupuis, Numerical methods for stochastic control problems in continuous time. Springer, New York, Appl. Math. 24 (2001). Second edition. | MR | Zbl

[13] P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. Part 2: Viscosity solutions and uniqueness. Comm. Partial Differential Equations 8 (1983) 1229-1276. | Zbl

[14] P.-L. Lions and B. Mercier, Approximation numérique des équations de Hamilton-Jacobi-Bellman. RAIRO Anal. Numér. 14 (1980) 369-393. | Numdam | Zbl

[15] J.-L. Menaldi, Some estimates for finite difference approximations. SIAM J. Control Optim. 27 (1989) 579-607. | Zbl

Cité par Sources :