@article{M2AN_1995__29_1_97_0, author = {Camilli, Fabio and Falcone, Maurizio}, title = {An approximation scheme for the optimal control of diffusion processes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {97--122}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {29}, number = {1}, year = {1995}, mrnumber = {1326802}, zbl = {0822.65044}, language = {en}, url = {http://www.numdam.org/item/M2AN_1995__29_1_97_0/} }
TY - JOUR AU - Camilli, Fabio AU - Falcone, Maurizio TI - An approximation scheme for the optimal control of diffusion processes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1995 SP - 97 EP - 122 VL - 29 IS - 1 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1995__29_1_97_0/ LA - en ID - M2AN_1995__29_1_97_0 ER -
%0 Journal Article %A Camilli, Fabio %A Falcone, Maurizio %T An approximation scheme for the optimal control of diffusion processes %J ESAIM: Modélisation mathématique et analyse numérique %D 1995 %P 97-122 %V 29 %N 1 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1995__29_1_97_0/ %G en %F M2AN_1995__29_1_97_0
Camilli, Fabio; Falcone, Maurizio. An approximation scheme for the optimal control of diffusion processes. ESAIM: Modélisation mathématique et analyse numérique, Tome 29 (1995) no. 1, pp. 97-122. http://www.numdam.org/item/M2AN_1995__29_1_97_0/
[A] Analyse de l'algorithme multigrille FMGH de résolution d'équations de Hamilton-Jacobi-Bellman, in A. Bensoussan, J.-L Lions (Eds.), Analysis and Optimization of Systems, Lecture Notes in Control and Information Science, n° 144, Springer-Verlag, 113-122. | MR | Zbl
, 1990,[BS] Convergence of approximation schemes for fully non linear second order equations, Asymptotic Analysis, 4, 271-282. | MR | Zbl
, , 1991,[BCM] On the numerical approximation of an optimal correction problem, SIAM J. Sci Statist. Comput., 9, 970-991. | MR | Zbl
, , , 1989,[BeS] Stochastic Optimal Control: the discrete time case, Academic Press, New York. | MR | Zbl
, , 1978,[C] On a discrete approximation of the Hamilton-Jacobi equation of Dynamic Programming, Appl. Math. Optim., 10, 367-377. | MR | Zbl
, 1983,[CDF] Discrete dynamic programming and viscosity solution of the Bellman equation, Annales de l'Institut H. Poincaré-Analyse non linéaire, 6, 161-184. | Numdam | MR | Zbl
, , 1989,[CF]
, , forthcoming.[CI] Approximate solutions of the Bellman equation of Deterministic Control Theory, Appl. Math. Optim., 11, 161-181. | MR | Zbl
, , 1984,[CIL] A user guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27, 1-67. | MR | Zbl
, , , 1991,[FI] A numerical approach to infinite horizon problem,Appl. Math. Optim., 15, 1-13 and 23, 213-214. | MR | Zbl
, 1987, 1991,[F2] Numerical solution of optimal control problems, Proceedings of the International Symposium on Numerical Analysis, Madrid.
, 1985,[FF] Discrete-time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations, Numerische Mathematik, 67,315-344. | MR | Zbl
, , 1994,[FIF] Numerical Methods for an optimal investment/consumption model, to appear on Math. Operation Research. | MR | Zbl
, ,[FS] Controlled Markov processes and viscosity solutions, Springer-Verlag, New York. | MR | Zbl
, , 1993,[GR] On determmistic control problems : an approximation procedure for the optimal cost(part I and II), SIAM J. Control and Optimization, 23, 242-285. | Zbl
, , 1985,[H] Multi-grid methods for Hamilton-Jacobi-Bellman equations, Numerische Mathematik, 49, 235-254. | MR | Zbl
, 1986,[IL] Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Diff. Eq., 83, 26-78. | MR | Zbl
, , 1990,[K] Probability methods for approximations in stochastic control and for elliptic equations, Academic Press, New York. | MR | Zbl
, 1977,[KD] Numerical methods for stochastic control problems in continuous time, Springer Verlag, New York. | MR | Zbl
, , 1992,[Ll] Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations part 1 the dynamic programming principle and applications, Comm. Partial Diff. Equations, 8, 1101-1174. | MR | Zbl
, 1983,[L2] Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations part 2 : Viscosity solutions and uniqueness, Comm. Partial Diff. Equations, 8, 1229-1270. | MR | Zbl
, 1983,[LM] Approximation numérique des équations de Hamilton-Jacobi-Bellman, RAIRO Anal. Numer., 14, 369-393. | Numdam | MR | Zbl
, ,[M] Some estimates for finite difference approximations, SIAM J. Control Optim., 27, 579-607. | MR | Zbl
, 1989,[Q] Existence de solution et algorithme de résolutions numériques de problèmes stochastiques dégénérées ou non, SIAM J. Control and Optimization, 18, 199-226. | MR | Zbl
, 1980,[S] Approximation schemes for viscosity solutions of Hamilton-Jacobi equations, J. Diff. Eq., 57, 1-43. | MR | Zbl
, 1985,[Su] Domain decomposition algorithms for solvign Hamilton-Jacobi-Bellman equations, Numerical Func. Anal. and Optim., 14, 145-166. | MR | Zbl
, 1993,