In this paper, we consider a multi-lithology diffusion model used in stratigraphic modelling to simulate large scale transport processes of sediments described as a mixture of
Mots-clés : finite volume method, stratigraphic modelling, linear first order equations, convergence analysis, linear advection equation, unique weak solution, adjoint problem
@article{M2AN_2004__38_4_585_0, author = {Gervais, V\'eronique and Masson, Roland}, title = {Mathematical and numerical analysis of a stratigraphic model}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {585--611}, publisher = {EDP-Sciences}, volume = {38}, number = {4}, year = {2004}, doi = {10.1051/m2an:2004035}, mrnumber = {2087725}, zbl = {1130.86315}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an:2004035/} }
TY - JOUR AU - Gervais, Véronique AU - Masson, Roland TI - Mathematical and numerical analysis of a stratigraphic model JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 585 EP - 611 VL - 38 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2004035/ DO - 10.1051/m2an:2004035 LA - en ID - M2AN_2004__38_4_585_0 ER -
%0 Journal Article %A Gervais, Véronique %A Masson, Roland %T Mathematical and numerical analysis of a stratigraphic model %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 585-611 %V 38 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an:2004035/ %R 10.1051/m2an:2004035 %G en %F M2AN_2004__38_4_585_0
Gervais, Véronique; Masson, Roland. Mathematical and numerical analysis of a stratigraphic model. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 4, pp. 585-611. doi : 10.1051/m2an:2004035. https://www.numdam.org/articles/10.1051/m2an:2004035/
[1] Interaction of Weathering and Transport Processes in the Evolution of Arid Landscapes, in Quantitative Dynamics Stratigraphy, T.A. Cross Ed., Prentice Hall (1989) 349-361.
and ,[2] Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels ; théorèmes d'approximation ; application à l'équation de transport. Ann. Sci. École Norm. Sup. 3 (1971) 185-233. | Numdam | Zbl
,[3] An up-to-the boundary version of Friedrichs' lemma and applications to the linear Koiter shell model. SIAM J. Math. Anal. 33 (2001) 877-895. | Zbl
, ,[4] Convergence of a numerical scheme for stratigraphic modeling. SIAM J. Numer. Anal. submitted. | MR | Zbl
, , and ,[5] Multi-lithology stratigraphic model under maximum erosion rate constraint. Int. J. Numer. Meth. Eng. 60 (2004) 527-548. | Zbl
, , , and ,[6] A synthetic stratigraphic model of foreland basin development. J. Geophys. Res. 94 (1989) 3851-3866.
and ,[7] Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer (1996). | MR | Zbl
and ,[8] Modélisation Stratigraphique Déterministe: Conception et Applications d'un Modèle Diffusif 3D Multilithologique. Ph.D. Thesis, Géosciences Rennes, Rennes, France (1997).
,[9] Concepts and applications of a 3D multiple lithology, diffusive model in stratigraphic modeling, in J.W. Harbaugh et al. Eds., Numerical Experiments in Stratigraphy, SEPM Sp. Publ. 62 (1999).
and ,[10] Morphology of a delta prograding by bulk sediment transport, Geological Society of America Bulletin 96 (1985) 1457-1465.
and ,[11] Linear and quasilinear equations of parabolic type. Transl. Math. Monogr. 23 (1968). | Zbl
, and ,[12] Application of a dual lithology, depth-dependent diffusion equation in stratigraphic simulation. Basin Research 4 (1992) 133-146.
,[13] Impact of sediment transport efficiency on large-scale sequence architecture: results from stratigraphic computer simulation. Basin Research 9 (1997) 91-105.
,[14] Simulating Clastic Sedimentation. Van Norstrand Reinhold, New York (1989).
and ,[15] Erosional dynamics, flexural isostasy, and long-lived escarpments: A numerical modeling study. J. Geophys. Res. 99 (1994) 229-243.
and ,Cité par Sources :