Microstructures in phase-transitions of alloys are modeled by the energy minimization of a nonconvex energy density
Mots-clés : non-monotone evolution, nonlinear elastodynamics, Young-measure approximation, nonlinear wave equation
@article{M2AN_2004__38_3_397_0, author = {Carstensen, Carsten and Rieger, Marc Oliver}, title = {Young-measure approximations for elastodynamics with non-monotone stress-strain relations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {397--418}, publisher = {EDP-Sciences}, volume = {38}, number = {3}, year = {2004}, doi = {10.1051/m2an:2004019}, mrnumber = {2075752}, zbl = {1130.74383}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an:2004019/} }
TY - JOUR AU - Carstensen, Carsten AU - Rieger, Marc Oliver TI - Young-measure approximations for elastodynamics with non-monotone stress-strain relations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 397 EP - 418 VL - 38 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2004019/ DO - 10.1051/m2an:2004019 LA - en ID - M2AN_2004__38_3_397_0 ER -
%0 Journal Article %A Carstensen, Carsten %A Rieger, Marc Oliver %T Young-measure approximations for elastodynamics with non-monotone stress-strain relations %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 397-418 %V 38 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an:2004019/ %R 10.1051/m2an:2004019 %G en %F M2AN_2004__38_3_397_0
Carstensen, Carsten; Rieger, Marc Oliver. Young-measure approximations for elastodynamics with non-monotone stress-strain relations. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 3, pp. 397-418. doi : 10.1051/m2an:2004019. https://www.numdam.org/articles/10.1051/m2an:2004019/
[1] Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 13-52. | Zbl
and ,[2] Regularity of quasiconvex envelopes. Calc. Var. Partial Differential Equations 11 (2000) 333-359. | Zbl
, and ,[3] Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973) 129-184. | Numdam | Zbl
and ,[4] Numerical analysis of microstructure, in Theory and numerics of differential equations (Durham, 2000), Universitext, Springer Verlag, Berlin (2001) 59-126. | Zbl
,[5] Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp. 66 (1997) 997-1026. | Zbl
and ,[6] Numerical approximation of Young measures in non-convex variational problems. Numer. Math. 84 (2000) 395-415. | Zbl
and ,
[7] Time-space discretization of the nonlinear hyperbolic system
[8] Numerical analysis of oscillations in multiple well problems. Numer. Math. 70 (1995) 259-282. | Zbl
, and ,[9] Optimal-order error estimates for the finite element approximation of the solution of a nonconvex variational problem. Math. Comp. 57 (1991) 621-637. | Zbl
and ,[10] Numerical approximation of the solution of a variational problem with a double well potential. SIAM J. Numer. Anal. 28 (1991) 321-332. | Zbl
, and ,[11] Energy methods for quasilinear hyperbolic initial-boundary value problems. Applications to elastodynamics. Arch. Rational Mech. Anal. 87 (1985) 267-292. | Zbl
and ,[12] Young-measure solutions for a nonlinear parabolic equation of forward-backward type. SIAM J. Math. Anal. 27 (1996) 376-403. | Zbl
,[13] Young-measure solutions for nonlinear evolutionary systems of mixed type. Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997) 143-162. | Numdam | Zbl
,[14] Implicit time discretization and global existence for a quasi-linear evolution equation with nonconvex energy. SIAM J. Math. Anal. 28 (1997) 363-380. | Zbl
and ,[15] Weak convergence of integrands and the Young measure representation. SIAM J. Math. Anal. 23 (1992) 1-19. | Zbl
and ,[16] The computation of the dynamics of the martensitic transformation. Contin. Mech. Thermodyn. 6 (1994) 209-240. | Zbl
and ,[17] On the computation of crystalline microstructure, in Acta numerica, Cambridge Univ. Press, Cambridge (1996) 191-257. | Zbl
,[18] Variational models for microstructure and phase transition, in Calculus of Variations and Geometric Evolution Problems, S. Hildebrandt and M. Struwe Eds., Lect. Notes Math. 1713, Springer-Verlag, Berlin (1999). | MR | Zbl
,[19] Computation of microstructure utilizing Young measure representations, in Transactions of the Tenth Army Conference on Applied Mathematics and Computing (West Point, NY, 1992), US Army Res. Office, Research Triangle Park, NC (1993) 57-68.
and ,[20] Parametrized measures and variational principles. Birkhäuser (1997). | MR | Zbl
,[21] Time dependent Young measure solutions for an elasticity equation with diffusion, in International Conference on Differential Equations, Vol. 2 (Berlin, 1999), World Sci. Publishing, River Edge, NJ 1 (2000) 457-459. | Zbl
,[22] Young-measure solutions for nonconvex elastodynamics. SIAM J. Math. Anal. 34 (2003) 1380-1398. | Zbl
,[23] Global existence for nonconvex thermoelasticity. Preprint 30/2002, Center for Nonlinear Analysis, Carnegie Mellon University, Pittsburgh, USA (2002). | MR | Zbl
and ,[24] Relaxation in optimization theory and variational calculus. Walter de Gruyter & Co., Berlin (1997). | MR | Zbl
,[25] Dynamics of measured valued solutions to a backward-forward heat equation. J. Dynam. Differ. Equations 3 (1991) 1-28. | Zbl
,[26] Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt Symposium. Pitman, Boston, Mass. IV (1979) 136-212. | Zbl
,[27] Partial Differential Equations III. Appl. Math. Sciences. Springer-Verlag, 117 (1996). | MR | Zbl
,[28] Generalized curves and the existence of an attained absolute minimum in the calculus variations, volume classe III. (1937). | JFM | Zbl
,[29] Lectures on the calculus of variations and optimal control theory. W.B. Saunders Co., Philadelphia (1969). | MR | Zbl
,[30] On some semiconvex envelopes. NoDEA. Nonlinear Differential Equations Appl. 9 (2002) 37-44. | Zbl
,- Thermodynamics of viscoelastic solids, its Eulerian formulation, and existence of weak solutions, Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 2 | DOI:10.1007/s00033-023-02175-7
- Newton’s second law with a semiconvex potential, Partial Differential Equations and Applications, Volume 3 (2022) no. 1 | DOI:10.1007/s42985-021-00136-1
- Two-Phase Solutions for One-Dimensional Non-convex Elastodynamics, Archive for Rational Mechanics and Analysis, Volume 232 (2019) no. 1, p. 489 | DOI:10.1007/s00205-018-1326-1
- Weak and Young Measure Solutions for Hyperbolic Initial Boundary Value Problems of Elastodynamics in the Orlicz–Sobolev Space Setting, SIAM Journal on Mathematical Analysis, Volume 48 (2016) no. 2, p. 1297 | DOI:10.1137/15m1016138
- Young measure solutions for a fourth-order wave equation with variable growth, Boundary Value Problems, Volume 2015 (2015) no. 1 | DOI:10.1186/s13661-015-0386-5
- Survey of Existence Results in Nonlinear Peridynamics in Comparison with Local Elastodynamics, Computational Methods in Applied Mathematics, Volume 15 (2015) no. 4, p. 483 | DOI:10.1515/cmam-2015-0020
- Evolution equations of second order with nonconvex potential and linear damping: existence via convergence of a full discretization, Journal of Differential Equations, Volume 255 (2013) no. 10, p. 3719 | DOI:10.1016/j.jde.2013.07.065
- Young measure solutions for the wave equation withp(x,t)-Laplacian: Existence and blow-up, Nonlinear Analysis: Theory, Methods Applications, Volume 92 (2013), p. 153 | DOI:10.1016/j.na.2013.07.010
- Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions, Nonlinear Analysis: Theory, Methods Applications, Volume 93 (2013), p. 62 | DOI:10.1016/j.na.2013.07.019
- Convergence of a Finite Element-Based Space-Time Discretization in Elastodynamics, SIAM Journal on Numerical Analysis, Volume 46 (2008) no. 5, p. 2469 | DOI:10.1137/070685166
- A Model for Hysteresis in Mechanics Using Local Minimizers of Young Measures, Elliptic and Parabolic Problems, Volume 63 (2005), p. 403 | DOI:10.1007/3-7643-7384-9_39
- Effective relaxation for microstructure simulations: algorithms and applications, Computer Methods in Applied Mechanics and Engineering, Volume 193 (2004) no. 48-51, p. 5143 | DOI:10.1016/j.cma.2003.12.065
Cité par 12 documents. Sources : Crossref