@article{AIHPC_1997__14_1_143_0, author = {Demoulini, Sophia}, title = {Young measure solutions for nonlinear evolutionary systems of mixed type}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {143--162}, publisher = {Gauthier-Villars}, volume = {14}, number = {1}, year = {1997}, mrnumber = {1437192}, zbl = {0871.35065}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1997__14_1_143_0/} }
TY - JOUR AU - Demoulini, Sophia TI - Young measure solutions for nonlinear evolutionary systems of mixed type JO - Annales de l'I.H.P. Analyse non linéaire PY - 1997 SP - 143 EP - 162 VL - 14 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1997__14_1_143_0/ LA - en ID - AIHPC_1997__14_1_143_0 ER -
Demoulini, Sophia. Young measure solutions for nonlinear evolutionary systems of mixed type. Annales de l'I.H.P. Analyse non linéaire, Tome 14 (1997) no. 1, pp. 143-162. http://www.numdam.org/item/AIHPC_1997__14_1_143_0/
[1] A version of the fundamental theorem of Young measures, in PDE's and continuum models of phase transitions, Rascle, Serre and Slemrod, eds., Vol. 344, Lecture Notes of Physics, Springer-Verlag, 1989, pp. 207-215. | MR | Zbl
,[2] On the dynamics of fine structure, J. Nonlinear Science Vol. 1, 1991, pp. 17-70. | MR | Zbl
, , , and ,[3] Heat flows and relaxed energies for harmonic maps, in Nonlinear Diffusion Equations and Their Equilibrium States, 3, Lloyd, Ni, Peletier and Serrin, eds., Progress in Nonlinear Differential Equations, Vol. 7, Birkhäuser, 1992, pp. 99-109. | MR | Zbl
, , and ,[4] Equilibrium Configurations of Crystals, Arch. Rat. Mech. Anal., Vol. 103 (3), 1988, pp. 237-277. | MR | Zbl
and ,[5] Direct Methods in the Calculus of Variations, Springer-Verlag, 1989. | MR | Zbl
,[6] Young measure solutions for a nonolinear parabolic equation of forward-backward type, SIAM J. Math. Anal., Vol. 27 (2), 1996, pp. 376-403. | MR | Zbl
,[7] Convergence of approximate solutions to conservation laws, Arch. Rat. Mech. Anal., Vol. 82, 1983, pp. 27-70. | MR | Zbl
,[8] Measure-valued solutions to conservation laws, Arch. Rat. Mech. Anal., Vol. 88 (3), 1985, pp. 223-270. | MR | Zbl
,[9] Shock induced transitions and phase structures in general media, Dunn, Fosdick and Slemrod, eds., IMA Volumes in Mathematics and its Applications, Vol. 52, Springer Verlag, 1993. | MR | Zbl
and ,[10] A construction of solutions satisfying a Cacciopoli inequality for non-linear parabolic equations associated to a variational functional of harmonic type, Boll. Un. Mat. Ital. Vol. 3-A(7), 1989, pp. 199-207.
and ,[11] ] Weak convergence of integrands and the Young measure representation, Siam. J. Math. Anal., Vol. 23 (1), 1992, pp. 1-19. | MR | Zbl
and ,[12] Remarks about the analysis of Gradient Young measures, J. Geom. Anal., Vol. 4 (1), 1994, pp. 59-90. | MR | Zbl
and ,[13] Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, 1969. | MR | Zbl
,[14] Dynamical modeling of phase transitions by means of viscoelasticity in many dimensions, Proc. Roy. Soc. Edinburgh, Vol. 121A (1-2), 1993, pp. 101-138. | MR | Zbl
,[15] Dynamics of measure valued solutions to a backward-forward heat equation, J. Dynamics Diff. Equations, Vol. 3 (1), 1991, pp. 1-28. | MR | Zbl
,[16] Energy minimisation and formation of microstructure in dynamic anti-plane shear, Arch. Rat. Mech. Anal., Vol. 121 (1), 1992, pp. 37-85. | MR | Zbl
and ,