The class number one problem for some non-abelian normal CM-fields of degree 24
Journal de théorie des nombres de Bordeaux, Tome 11 (1999) no. 2, pp. 387-406.

Nous déterminons tous les corps de nombres de degré 24, galoisiens mais non-abéliens, à multiplication complexe et tels que les groupes de Galois de leurs sous-corps totalement réels maximaux soient isomorphes à 𝒜4 (le groupe alterné de degré 4 et d’ordre 12) qui sont de nombres de classes d’idéaux égaux à 1. Nous prouvons (𝑖) qu’il y a deux tels corps de nombres de groupes de Galois 𝒜4×𝒞2 (voir Théorème 14), (𝑖𝑖) qu’il y a au plus un tel corps de nombres de groupe de Galois SL2(𝔽3) (voir Théorème 18), et (𝑖𝑖𝑖) que sous l’hypothèse de Riemann généralisée ce dernier corps candidat est effectivement de nombre de classes d’idéaux égal à 1.

We determine all the non-abelian normal CM-fields of degree 24 with class number one, provided that the Galois group of their maximal real subfields is isomorphic to 𝒜4, the alternating group of degree 4 and order 12. There are two such fields with Galois group 𝒜4×𝒞2 (see Theorem 14) and at most one with Galois group SL2(𝔽3) (see Theorem 18); if the generalized Riemann hypothesis is true, then this last field has class number 1.

@article{JTNB_1999__11_2_387_0,
     author = {Lemmermeyer, F. and Louboutin, S. and Okazaki, R.},
     title = {The class number one problem for some non-abelian normal {CM-fields} of degree $24$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {387--406},
     publisher = {Universit\'e Bordeaux I},
     volume = {11},
     number = {2},
     year = {1999},
     mrnumber = {1745886},
     zbl = {1010.11063},
     language = {en},
     url = {https://www.numdam.org/item/JTNB_1999__11_2_387_0/}
}
TY  - JOUR
AU  - Lemmermeyer, F.
AU  - Louboutin, S.
AU  - Okazaki, R.
TI  - The class number one problem for some non-abelian normal CM-fields of degree $24$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 1999
SP  - 387
EP  - 406
VL  - 11
IS  - 2
PB  - Université Bordeaux I
UR  - https://www.numdam.org/item/JTNB_1999__11_2_387_0/
LA  - en
ID  - JTNB_1999__11_2_387_0
ER  - 
%0 Journal Article
%A Lemmermeyer, F.
%A Louboutin, S.
%A Okazaki, R.
%T The class number one problem for some non-abelian normal CM-fields of degree $24$
%J Journal de théorie des nombres de Bordeaux
%D 1999
%P 387-406
%V 11
%N 2
%I Université Bordeaux I
%U https://www.numdam.org/item/JTNB_1999__11_2_387_0/
%G en
%F JTNB_1999__11_2_387_0
Lemmermeyer, F.; Louboutin, S.; Okazaki, R. The class number one problem for some non-abelian normal CM-fields of degree $24$. Journal de théorie des nombres de Bordeaux, Tome 11 (1999) no. 2, pp. 387-406. https://www.numdam.org/item/JTNB_1999__11_2_387_0/

[1] J.V. Armitage, A. Frohlich, Classnumbers and unit signatures. Mathematika 14 (1967), 94-98. | MR | Zbl

[2] C. Bachoc, S.-H. Kwon, Sur les extensions de groupe de Galois Ã4. Acta Arith. 62 (1992), 1-10. | MR | Zbl

[3] H. Cohen A course in computational algebraic number theory. Grad. Texts Math. 138, Springer-Verlag, Berlin, Heidelberg, New York (1993). | MR | Zbl

[4] H. Cohen, F. Diaz Y Diaz, M. Olivier, Tables of octic fields with a quartic subfield. Math. Comp., à paraître. | Zbl

[5] A. Derhem, Capitulation dans les extensions quadratiques non ramifiées de corps de nombres cubiques cycliques. thèse, Université Laval, Québec (1988).

[6] Ph. Furtwängler, Über das Verhalten der Ideale des Grundkörpers im Klassenkörper. Monatsh. Math. Phys. 27 (1916), 1-15. | JFM | MR

[7] H. Heilbronn, Zeta-functions and L-functions. Algebraic Number Theory, Chapter VIII, J.W.S. Cassels and A. Fröhlich, Academic Press, (1967). | MR

[8] G. James, M. Liebeck, Representations and Characters of groups. Cambridge University Press, (1993). | MR | Zbl

[9] KANT V4, by M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig, and K. Wildanger, J. Symbolic Computation 24 (1997),267-283. | MR | Zbl

[10] H. Koch, Über den 2-Klassenkörperturm eines quadratischen Zahlkörpers. I, J. Reine Angew. Math. 214/215 (1963), 201-206. | MR | Zbl

[11] P. Kolvenbach, Zur arithmetischen Theorie der SL(2, 3)-Erweiterungen. Diss. Köln, 1982.

[12] S.-H. Kwon, Corps de nombres de degré 4 de type alterné. C. R. Acad. Sci. Paris 299 (1984), 41-43. | MR | Zbl

[13] S. Lang, Cyclotomic Fields II. Springer-Verlag 1980 | MR | Zbl

[14] F. Lemmermeyer, Ideal class groups of cyclotomic number fields I. Acta Arith. 72 (1995), 347-359. | MR | Zbl

[15] F. Lemmermeyer, Unramified quaternion extensions of quadratic number fields. J. Théor. N. Bordeaux 9 (1997), 51-68. | Numdam | MR | Zbl

[16] Y. Lefeuvre, Corps diédraux à multiplication complexe principaux. Ann. Inst. Fourier, à paraitre. | Numdam | Zbl

[17] S. Louboutin, R. Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one. Acta Arith. 67 (1994), 47-62. | MR | Zbl

[18] S. Louboutin, R. Okazaki, The class number one problem for some non-abelian normal CM-fields of 2-power degrees. Proc. London Math. Soc. 76, No.3 (1998), 523-548. | MR | Zbl

[19] S. Louboutin, R. Okazaki, M. Olivier, The class number one problem for some non-abelian normal CM-fields. Trans. Amer. Math. Soc. 349 (1997), 3657-3678. | MR | Zbl

[20] S. Louboutin, Lower bounds for relative class numbers of CM-fields. Proc. Amer. Math. Soc. 120 (1994), 425-434. | MR | Zbl

[21] S. Louboutin, Majoration du résidu au point 1 des fonctions zêta de certains corps de nombres. J. Math. Soc. Japan 50 (1998), 57-69. | MR | Zbl

[22] S. Louboutin, The class number one problem for the non-abelian normal CM-fields of degree 16. Acta Arith. 82 (1997), 173-196. | MR | Zbl

[23] S. Louboutin, Upper bounds on |L(1, χ)| and applications. Canad. J. Math., 50 (4), (1998), 794-815. | Zbl

[24] R. Okazaki, Inclusion of CM-fields and divisibility of class numbers. Acta Arith., à paraître. | Zbl

[25] User's Guide to PARI-GP, by C. Batut,K. Belabas,D. Bernardi,H. CohenandM. Olivierlast updated Nov. 14, 1997; Laboratoire A2X, Univ. Bordeaux I.

[26] Y.-H. Park, S.-H. Kwon, Determination of all imaginary abelian sextic number fields with class number < 11. Acta Arith. 82 (1997), 27-43. | MR | Zbl

[27] A. Rio, Dyadic exercises for octahedral extensions. preprint 1997; URL: http://www-ma2. upc. as/~rio/papers. html

[28] H.M. Stark, Some effective cases of the Brauer-Siegel theorem. Invent. Math. 23 (1974), 135-152. | MR | Zbl

[29] O. Taussky, A remark on the class field tower. J. London Math. Soc. 12 (1937), 82-85. | JFM | Zbl

[30] A.D. Thomas, G.V. Wood, Group Tables, Shiva Publishing Ltd, Kent, UK 1980. | MR | Zbl

[31] L.C. Washington, Introduction to Cyclotomic Fields. Grad. Texts Math. 83, Springer-Verlag 1982; 2nd edition 1997. | MR | Zbl

[32] A. Weil, Exercices dyadiques. Invent. Math. 27 (1974), 1-22. | MR | Zbl