Nous déterminons tous les corps de nombres de degré
We determine all the non-abelian normal CM-fields of degree 24 with class number one, provided that the Galois group of their maximal real subfields is isomorphic to
@article{JTNB_1999__11_2_387_0, author = {Lemmermeyer, F. and Louboutin, S. and Okazaki, R.}, title = {The class number one problem for some non-abelian normal {CM-fields} of degree $24$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {387--406}, publisher = {Universit\'e Bordeaux I}, volume = {11}, number = {2}, year = {1999}, mrnumber = {1745886}, zbl = {1010.11063}, language = {en}, url = {https://www.numdam.org/item/JTNB_1999__11_2_387_0/} }
TY - JOUR AU - Lemmermeyer, F. AU - Louboutin, S. AU - Okazaki, R. TI - The class number one problem for some non-abelian normal CM-fields of degree $24$ JO - Journal de théorie des nombres de Bordeaux PY - 1999 SP - 387 EP - 406 VL - 11 IS - 2 PB - Université Bordeaux I UR - https://www.numdam.org/item/JTNB_1999__11_2_387_0/ LA - en ID - JTNB_1999__11_2_387_0 ER -
%0 Journal Article %A Lemmermeyer, F. %A Louboutin, S. %A Okazaki, R. %T The class number one problem for some non-abelian normal CM-fields of degree $24$ %J Journal de théorie des nombres de Bordeaux %D 1999 %P 387-406 %V 11 %N 2 %I Université Bordeaux I %U https://www.numdam.org/item/JTNB_1999__11_2_387_0/ %G en %F JTNB_1999__11_2_387_0
Lemmermeyer, F.; Louboutin, S.; Okazaki, R. The class number one problem for some non-abelian normal CM-fields of degree $24$. Journal de théorie des nombres de Bordeaux, Tome 11 (1999) no. 2, pp. 387-406. https://www.numdam.org/item/JTNB_1999__11_2_387_0/
[1] Classnumbers and unit signatures. Mathematika 14 (1967), 94-98. | MR | Zbl
, ,[2] Sur les extensions de groupe de Galois Ã4. Acta Arith. 62 (1992), 1-10. | MR | Zbl
, ,[3] A course in computational algebraic number theory. Grad. Texts Math. 138, Springer-Verlag, Berlin, Heidelberg, New York (1993). | MR | Zbl
[4] Tables of octic fields with a quartic subfield. Math. Comp., à paraître. | Zbl
, , ,[5] Capitulation dans les extensions quadratiques non ramifiées de corps de nombres cubiques cycliques. thèse, Université Laval, Québec (1988).
,[6] Über das Verhalten der Ideale des Grundkörpers im Klassenkörper. Monatsh. Math. Phys. 27 (1916), 1-15. | JFM | MR
,[7] Zeta-functions and L-functions. Algebraic Number Theory, Chapter VIII, and , Academic Press, (1967). | MR
,[8] Representations and Characters of groups. Cambridge University Press, (1993). | MR | Zbl
, ,[9] KANT V4, by , , , , , , and , J. Symbolic Computation 24 (1997),267-283. | MR | Zbl
[10] Über den 2-Klassenkörperturm eines quadratischen Zahlkörpers. I, J. Reine Angew. Math. 214/215 (1963), 201-206. | MR | Zbl
,[11] Zur arithmetischen Theorie der SL(2, 3)-Erweiterungen. Diss. Köln, 1982.
,[12] Corps de nombres de degré 4 de type alterné. C. R. Acad. Sci. Paris 299 (1984), 41-43. | MR | Zbl
,[13] Cyclotomic Fields II. Springer-Verlag 1980 | MR | Zbl
,[14] Ideal class groups of cyclotomic number fields I. Acta Arith. 72 (1995), 347-359. | MR | Zbl
,[15] Unramified quaternion extensions of quadratic number fields. J. Théor. N. Bordeaux 9 (1997), 51-68. | Numdam | MR | Zbl
,[16] Corps diédraux à multiplication complexe principaux. Ann. Inst. Fourier, à paraitre. | Numdam | Zbl
,[17] Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one. Acta Arith. 67 (1994), 47-62. | MR | Zbl
, ,[18] The class number one problem for some non-abelian normal CM-fields of 2-power degrees. Proc. London Math. Soc. 76, No.3 (1998), 523-548. | MR | Zbl
, ,[19] The class number one problem for some non-abelian normal CM-fields. Trans. Amer. Math. Soc. 349 (1997), 3657-3678. | MR | Zbl
, , ,[20] Lower bounds for relative class numbers of CM-fields. Proc. Amer. Math. Soc. 120 (1994), 425-434. | MR | Zbl
,[21] Majoration du résidu au point 1 des fonctions zêta de certains corps de nombres. J. Math. Soc. Japan 50 (1998), 57-69. | MR | Zbl
,[22] The class number one problem for the non-abelian normal CM-fields of degree 16. Acta Arith. 82 (1997), 173-196. | MR | Zbl
,[23] Upper bounds on |L(1, χ)| and applications. Canad. J. Math., 50 (4), (1998), 794-815. | Zbl
,[24] Inclusion of CM-fields and divisibility of class numbers. Acta Arith., à paraître. | Zbl
,[25] User's Guide to PARI-GP, by , , , and last updated Nov. 14, 1997; Laboratoire A2X, Univ. Bordeaux I.
[26] Determination of all imaginary abelian sextic number fields with class number < 11. Acta Arith. 82 (1997), 27-43. | MR | Zbl
, ,[27] Dyadic exercises for octahedral extensions. preprint 1997; URL: http://www-ma2. upc. as/~rio/papers. html
,[28] Some effective cases of the Brauer-Siegel theorem. Invent. Math. 23 (1974), 135-152. | MR | Zbl
,[29] A remark on the class field tower. J. London Math. Soc. 12 (1937), 82-85. | JFM | Zbl
,[30] Group Tables, Shiva Publishing Ltd, Kent, UK 1980. | MR | Zbl
, ,[31] Introduction to Cyclotomic Fields. Grad. Texts Math. 83, Springer-Verlag 1982; 2nd edition 1997. | MR | Zbl
,[32] Exercices dyadiques. Invent. Math. 27 (1974), 1-22. | MR | Zbl
,