We consider a controllability problem for a beam, clamped at one boundary and free at the other boundary, with an attached piezoelectric actuator. By Hilbert Uniqueness Method (HUM) and new results on diophantine approximations, we prove that the space of exactly initial controllable data depends on the location of the actuator. We also illustrate these results with numerical simulations.
Mots-clés : piezoelectric actuator, metallic beam, exact controlability
@article{COCV_2006__12_3_545_0, author = {Cr\'epeau, Emmanuelle and Prieur, Christophe}, title = {Control of a clamped-free beam by a piezoelectric actuator}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {545--563}, publisher = {EDP-Sciences}, volume = {12}, number = {3}, year = {2006}, doi = {10.1051/cocv:2006008}, mrnumber = {2224825}, zbl = {1106.93008}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2006008/} }
TY - JOUR AU - Crépeau, Emmanuelle AU - Prieur, Christophe TI - Control of a clamped-free beam by a piezoelectric actuator JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2006 SP - 545 EP - 563 VL - 12 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2006008/ DO - 10.1051/cocv:2006008 LA - en ID - COCV_2006__12_3_545_0 ER -
%0 Journal Article %A Crépeau, Emmanuelle %A Prieur, Christophe %T Control of a clamped-free beam by a piezoelectric actuator %J ESAIM: Control, Optimisation and Calculus of Variations %D 2006 %P 545-563 %V 12 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2006008/ %R 10.1051/cocv:2006008 %G en %F COCV_2006__12_3_545_0
Crépeau, Emmanuelle; Prieur, Christophe. Control of a clamped-free beam by a piezoelectric actuator. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 3, pp. 545-563. doi : 10.1051/cocv:2006008. https://www.numdam.org/articles/10.1051/cocv:2006008/
[1] Ingham type theorems and applications to control theory. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. 2 (1999) 33-63. | Zbl
, and ,[2] Shell finite element for smart piezoelectric composite plate/shell structures and its application to the study of active vibration control. Finite Elem. Anal. Des. 37 (2001) 713-738. | Zbl
and ,[3] An introduction to diophantine approximation. Moskau: Verlag 213 S. (1961). | MR | Zbl
,[4] Exact boundary controllability of the Boussinesq equation on a bounded domain. Diff. Int. Equ. 16 (2003) 303-326.
,[5] Contrôlabilité exacte d'équations dispersives issues de la mécanique. Thèse de l'Université de Paris-Sud, avalaible at www.math.ursq.fr/~crepeau/PUBLI/these1.html.
,[6] Theorical, numerical and experimental discussion of the use of piezoelectric devices for control-structure interaction. Eur. J. Mech., A/Solids 11 (1992) 97-106.
, , and ,[7] A mathematical analysis of a smart-beam which is equipped with piezoelectric actuators. Control Cybern. 28 (1999) 503-530. | Zbl
,[8] Linear systems over Mikusinski operators and control of a flexible beam. ESAIM: Proc. 2 (1997) 183-193. | Zbl
, , and ,[9] Mecanique, Tome II. Ellipses (1996).
,[10] Spatial Resonant Control of Flexible Structures - Applications to a Piezoelectric Laminate Beam. IEEE Trans. Control Syst. Tech. 9 (2001) 37-53.
and ,
[11] Spatial
[12] Finite element modeling of piezoelectric sensors and actuator. AIAA Journal 31 (1993) 930-937.
and ,[13] Some trigonometrical inequalities with applications to the theory of series. Math. Zeitschr. 41 (1936) 367-379. | Zbl
,[14] Introduction to diophantine approximations. Springer-Verlag (1991). | MR | Zbl
,[15] Amortissement actif des vibrations d'une structure flexible de type plaque à l'aide de transducteurs piézoélectriques. Thèse, ENS de Cachan (2002).
,[16] Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 1, Contrôlabilité exacte, Collection de recherche en mathématiques appliquées 8 (Masson, Paris), 1988. distribués, Masson, Paris (1988). | MR | Zbl
,[17] Elements of vibration analysis, Düsseldorf, McGraw-Hill (1975). | Zbl
,[18] Spectral assignability for distribued parameter systems with unbounded scalar control. SIAM J. Control Optim. 27 (1989) 148-169. | Zbl
,[19] Exact boundary controllability for the linear KdV equation - a numerical study. ESAIM: Proc. 4 (1998) 255-267. | Zbl
,[20] Flatness based boundary control of piezoelectric benders. Automatisierungstechnik 50 (2002) 412-421.
and ,
[21] The design of
[22]
[23] Regularity and exact controllability for a beam with piezoelectric actuator. SIAM J. Control Optim. 34 (1996) 922-930. | Zbl
,- Improved residual mode separation for finite-dimensional control of PDEs: Application to the Euler–Bernoulli beam, Systems Control Letters, Volume 197 (2025), p. 106048 | DOI:10.1016/j.sysconle.2025.106048
- , 2024 American Control Conference (ACC) (2024), p. 3290 | DOI:10.23919/acc60939.2024.10644783
- Control design for beam stabilization with self-sensing piezoelectric actuators: managing presence and absence of hysteresis, Mathematics of Control, Signals, and Systems, Volume 36 (2024) no. 4, p. 979 | DOI:10.1007/s00498-024-00393-6
- Exact controllability for a Rayleigh beam with piezoelectric actuator, Systems Control Letters, Volume 186 (2024), p. 105759 | DOI:10.1016/j.sysconle.2024.105759
- , 2023 62nd IEEE Conference on Decision and Control (CDC) (2023), p. 1961 | DOI:10.1109/cdc49753.2023.10383762
- Modeling and control of overhead cranes: A tutorial overview and perspectives, Annual Reviews in Control, Volume 56 (2023), p. 100877 | DOI:10.1016/j.arcontrol.2023.03.002
- Event-based control of a damped linear wave equation, Automatica, Volume 146 (2022), p. 110627 | DOI:10.1016/j.automatica.2022.110627
- Wave Equation With Cone-Bounded Control Laws, IEEE Transactions on Automatic Control, Volume 61 (2016) no. 11, p. 3452 | DOI:10.1109/tac.2016.2519759
- , 53rd IEEE Conference on Decision and Control (2014), p. 2846 | DOI:10.1109/cdc.2014.7039826
- Simultaneous
Vibration Control of Fluid/Plate System via Reduced-Order Controller, IEEE Transactions on Control Systems Technology, Volume 20 (2012) no. 3, p. 700 | DOI:10.1109/tcst.2011.2144984 - Discussion on: “Adaptive Boundary Control of the Forced Generalized Korteweg-de Vries-Burgers Equation”, European Journal of Control, Volume 16 (2010) no. 1, p. 85 | DOI:10.1016/s0947-3580(10)70625-7
- Exact Controllability of a Piezoelectric Body. Theory and Numerical Simulation, Applied Mathematics and Optimization, Volume 59 (2009) no. 3, p. 383 | DOI:10.1007/s00245-008-9059-4
- , Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference (2009), p. 5532 | DOI:10.1109/cdc.2009.5400607
- Output feedback stabilization of a clamped-free beam, International Journal of Control, Volume 80 (2007) no. 8, p. 1201 | DOI:10.1080/00207170601165097
Cité par 14 documents. Sources : Crossref