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CONTROL OF A CLAMPED-FREE BEAM BY A PIEZOELECTRIC ACTUATOR

Emmanuelle Crépeau1 and Christophe Prieur2

Abstract. We consider a controllability problem for a beam, clamped at one boundary and free at the
other boundary, with an attached piezoelectric actuator. By Hilbert Uniqueness Method (HUM) and
new results on diophantine approximations, we prove that the space of exactly initial controllable data
depends on the location of the actuator. We also illustrate these results with numerical simulations.
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Introduction

There exists now a large literature concerning the study of flexible structures in interaction with piezoelectric
actuators. Two directions of research can be exhibited. The modeling problem and the controllability problem.

A large number of models have been proposed and many dynamical systems modelizing a flexible structure
with a piezoelectric actuator can be found in the literature; e.g. model based on finite elements (see [2, 12]),
finite-dimensional approximations (see [11, 21, 22]) and also partial differential equations (see [6, 7]).

Concerning controllability results, there exists a wide literature. See e.g. [18] where the eigenvalue specifi-
cation problem is studied for the Euler-Bernoulli beam (with the same boundary condition but with different
control than in this paper). See also [8, 20] where flatness technics are used for approximate controllability
problems.

To the best to our knowledge, the only exact controllability result for a beam with a piezoelectric controller
is due to [23], where a beam with hinged boundary conditions is considered. The main purpose of our paper
is to study the exact controllability of a beam in a more physical configuration: the clamped-free boundary
conditions, i.e. a beam clamped at one end and free at the other end. There exist technological and industrial
(see [15]) motivations to study the control of beams with piezoelectric actuators with such boundary conditions.

In this paper we use the Hilbert Uniqueness Method (HUM) which is a classical approach to look for a
controllability result (see [16]) combined with new results of the theory of diophantine approximations.

With such physical conditions, the controllability problem is a completely different issue from [23] although
the method used in this paper and in [23] is the same one (namely HUM). Indeed the computations and the
diophantine approximations used in [23] and in this paper are slightly different and here we use some new results
in the theory of diophantine approximations.

Keywords and phrases. piezoelectric actuator, metallic beam, exact controlability.
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We prove that for any time T > 0 we have exact controllability of the beam if the position of patch is chosen
correctly. Roughly speaking, this exact controllability property means that the solutions of our model is at the
equilibrium at time T for sufficiently regular initial conditions.

Three main results are proved in this paper (see Sect. 1 for a precise statement):
• For almost every position of the piezoelectric patch’s ends, all initial conditions of the beam in a

sufficiently regular space are exactly controllable at time T > 0, for every T > 0.
• There exists a zero Lebesgue measure set of the piezoelectric patch’s ends, such that all initial conditions

of the beam in a less regular space are exactly controllable at time T , for every T > 0.
• If the length of the patch is exactly the length of the beam, then we have exact controllability results

in a larger class of initial conditions than the class of controllable initial conditions with the boundary
condition of [23].

Moreover we compute explicitly the voltage on the actuator, we need to apply to get these exact-controllability
properties. We check on numerical simulations that the exact-controllability is obtained. To do this we consider
the physical scaling parameters and look for the applicability of our control law.

The paper is organized as follows. In Section 1, we introduce the model of the beam under consideration
and give the main results of the paper. In Section 2, we give some preliminary results and then we state the
existence and give some regularity results of the Cauchy problem in Section 3. The main results are proved in
Section 4, and in Section 5, numerical simulations and physical applicability are studied.

Finally in Appendix A we prove the diophantine approximations needed for the controllability results of
Section 4.

1. Modelization and main results

Let us consider a Bernoulli-Euler beam that is free at one end and clamped at the opposite end. The beam is
subject to an attached piezoelectric actuator. Our model under consideration is the following one (see [9,10,17]
e.g.), for every (x, t) in [0, L] × [0, T ],

wtt(x, t) +
Y I

ρAb
wxxxx(x, t) =

1
ρAb

mxx(x, t) , (1)

w(0, t) = 0, wx(0, t) = 0 , (2)
wxx(L, t) = 0, wxxx(L, t) = 0 , (3)

where
• x ∈ [0, L] denotes the spatial coordinate attached to the beam of length L;
• t ∈ [0, T ] is the time coordinate, T > 0;
• x = 0 is the clamped boundary of the beam;
• x = L is the free boundary of the beam;
• w(x, t) is the beam transverse deflection at point x and at time t;
• ρ is the (uniform) density of the beam;
• Ab is the cross-sectional area;
• Y is the Young’s modulus of elasticity;
• I is the moment of inertia of the beam;
• m is the moment acting on the beam due to the piezoelectric actuator.

The initial conditions are
w(., 0) = w0, wt(., 0) = w1. (4)

The piezoelectric actuator acts a moment on the beam due to the applied voltage. This moment is only located
on the actuator. It is expressed by (see [10, 15]):

m(x, t) = KaVa(t)[H(x− ξ) −H(x− η)], (5)
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where Ka is a constant based on the properties of the beam and the piezoceramic patches (see an expression in
Sect. 5.1), Va(t) is the applied voltage to the piezoelectric actuator and x �→ H(x) is the Heaviside’s mapping,
i.e. vanishing for every x < 0, and equal to 1 for every x ≥ 0. Here ξ and η denote the location of the
piezoelectric patch’s ends along the x-axis.

To state our main results, let us introduce the function space Yα defined as follows, for any α ∈ R. Let
Y0 = L2(0, L). For every α > 0, let Yα be the closure in Hα(0, L) of the y ∈ C∞([0, L]) satisfying, for every n
in N,

y(4n)(0) = 0 ,

y(4n+1)(0) = 0 ,

y(4n+2)(L) = 0 ,

y(4n+3)(L) = 0 .

For every α > 0, we define Y−α as the dual space of Yα with respect to the space Y0.
Our exact controllability results are

Theorem 1.1. Let ε > 0, there exists a set A in (0, L)2 with Lebesgue measure L2 such that, for every (ξ, η) ∈ A,
all initial conditions in Y3+ε × Y1+ε are exactly L2(0, T )-controllable at time T > 0, for every T > 0.

Theorem 1.2. There exists a non-empty set B (uncountable but with Lebesgue measure zero) in (0, L)2 such
that, for every (ξ, η) ∈ B, all initial conditions in Y3 × Y1 are exactly L2(0, T )-controllable at time T > 0, for
every T > 0.

Theorem 1.3. In the special case of (ξ, η) = (0, L), all initial conditions in Y1 × Y−1 are exactly L2(0, T )-
controllable at time T > 0, for every T > 0.

Let us prove some preliminary results which are useful for the proof of our main results.

2. Preliminaries

By rescaling time and space, we may assume in all the following (except in Sect. 5) that Y I
ρAb

= 1 and L = π.
Let us define u(t) = 1

ρAb
KaVa(t) and thus, the controlled problem under consideration becomes

wtt + wxxxx = u(t) (H(x− ξ) −H(x− η))xx , 0 < x < π, 0 < t < T, (6)

w(0, t) = 0, wx(0, t) = 0, (7)

wxx(π, t) = 0, wxxx(π, t) = 0, (8)

w(., 0) = w0, wt(., 0) = w1. (9)

Since the problem is time-reversible we only need to considerate a null-controllability issue. That is, we say
that the initial conditions w0, w1 are exactly controllable at time T if there exists u ∈ L2(0, T ) such that the
solution w of (6)–(9) satisfies

w(., T ) = 0, wt(., T ) = 0 .

Let us introduce the homogeneous Cauchy problem:

φtt + φxxxx = 0, (10)

φ(0, t) = 0, φx(0, t) = 0, (11)

φxx(π, t) = 0, φxxx(π, t) = 0, (12)

φ(., 0) = φ0, φt(., 0) = φ1. (13)
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Let us end this section by studying the eigenfunctions of the operator w �→ wxxxx and giving some asymptotic
behaviors:

Lemma 2.1. Let A : H4(0, π) → L2(0, π) be defined, for every w ∈ H4(0, π), by

Aw = wxxxx , (14)

with
D(A) = {w ∈ H4(0, π), w(0) = wx(0) = wxx(π) = wxxx(π) = 0} .

Then the L2(0, π)-normalized eigenfunctions of A are, for every k in N
∗,

ψk(x) = γk(cos(αkx) − cosh(αkx) + µk(sinh(αkx) − sin(αkx))) , (15)

where αk is the k-th positive root of

1 + cos(αkπ) cosh(αkπ) = 0, (16)

and

µk =
cos(αkπ) + cosh(αkπ)
sin(αkπ) + sinh(αkπ)

, (17)

γk =
1√
π
, (18)

for the eigenvalue
λk = α4

k. (19)
Moreover we have the following Taylor expansions, as k tends to +∞:

αk = k − 1
2

+ (−1)k+1 2e
π
2

π
e−πk + o(e−πk), (20)

µk = 1 + 2(−1)ke−αkπ + o(e−αkπ), (21)

and also, for every ρ ∈ (0, π
2 ),

− sinh(αkρ) + µk cosh(αkρ) = e−αkρ + o(e−αkρ), (22)

for every ρ ∈ (π
2 , π),

− sinh(αkρ) + µk cosh(αkρ) = (−1)ke−αk(π−ρ) + o(e−αk(π−ρ)). (23)

Proof. Thanks to (14) the eigenfunctions of A are a linear combination of x �→ cos(αkx), x �→ sin(αkx),
x �→ cosh(αkx) and x �→ sinh(αkx) for the eigenvalue λk = α4

k with αk positive. Due to the boundary conditions
at x = 0, we have (15), for αk positive satisfying (19) and for some γk and µk in R. Easy computations yield:

(ψk)xx(π) = γkα
2
k(− cos(αkπ) − cosh(αkπ) + µk(sinh(αkπ) + sin(αkπ))), (24)

(ψk)xxx(π) = γkα
3
k(sin(αkπ) − sinh(αkπ) + µk(cosh(αkπ) + cos(αkπ))). (25)

Moreover note that (24) implies (17), and that (25), together with (24) implies (16). Tedious computation gives∫ π

0 (ψk)2dx = 1 with γk = 1√
π
·
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Let us now prove (20). Note that, due to the periodicity of cos, we have

αk = k − 1
2

+
βk

π
, k − 1 < αk < k and

1
2
< αk , (26)

where (βk)k is a sequence such that βk → 0 as k tends to infinity. Due to (16), we have

2 + (−1)k sin(βk)(eπk− π
2 +βk + e−πk+ π

2 −βk) = 0 .

This implies

2e−πk + (−1)k(βk + o(βk))
(
e−

π
2 (1 + βk + o(βk)) + e−2πke

π
2 (1 − βk + o(βk))

)
= 0 ,

i.e.
2e−πk + (−1)kβke−

π
2 + o(βk) = 0 ,

which implies (20) with (26).
Let us now check the Taylor expansion (21).
From (17) and (20), we get

µk − 1 =

√
2 sin(−αkπ + π

4 ) + e−αkπ

sin(αkπ) + sinh(αkπ)

=
(−1)k + e−αkπ + o(e−αkπ)

sin(αkπ) + sinh(αkπ)
,

and thus we have (21). Thanks to (20) and (21), easy computations yield (22). This concludes the proof of
Lemma 2.1. �

Note that, with the theory of compact and self-adjoint operators, we get that the eigenvectors form an
orthonormal basis of L2(0, π).
Let us now study the existence of solutions for the Cauchy problem and give some regularity results.

3. Existence and regularity of solutions

We first study the Cauchy problem (10)–(13) and write down an estimation of ‖φx(ρ, .)‖L2(0,T ) as follows.

Proposition 3.1. For every (φ0, φ1) ∈ Y1 ×Y−1, the solution of the homogeneous problem (10)–(13) is written
in Fourier series as

φ(x, t) =
+∞∑
k=1

(
φ0

k cos(α2
kt) +

φ1
k

α2
k

sin(α2
kt)
)
ψk(x) (27)

where

φ0
k =

∫ L

0

φ0(x)ψk(x)dx, φ1
k =

∫ L

0

φ1(x)ψk(x)dx.

Moreover, there exists C > 0, such that for every (φ0, φ1) ∈ Y1 × Y−1 and for any ρ ∈ (0, π), the function
φx(ρ, .) is in L2(0, T ) and

‖φx(ρ, .)‖L2(0,T ) ≤ C(‖φ0‖Y1 + ‖φ1‖Y−1). (28)

Proof. By the semigroup theory, we obtain that if (φ0, φ1) ∈ Y1×Y−1 then the homogeneous problem (10)–(13)
has a unique solution φ ∈ C0([0,+∞), Y1) ∩ C1([0,+∞), Y−1) which is (27).
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To prove (28), we use the following Ingham inequality, (see for example [1, 13]) to our problem:

Lemma 3.2. Let νk ∈ R
Z be a sequence of pairwise distinct real numbers such that

lim
|k|→∞

(νk+1 − νk) = +∞

and let T > 0. Then there exist two strictly positive constants C1 and C2 such that, for every sequence
(xk)k ∈ L2(Z), the series f(t) =

∑+∞
−∞ xkeiνkt converges in L2(0, T ) and it satisfies

C1

+∞∑
−∞

|xk|2 ≤
∫ T

0

|
+∞∑
−∞

xkeiνkt|2dt ≤ C2

+∞∑
−∞

|xk|2.

First of all, we have,

φ0(x) =
∞∑

k=1

φ0
kψk(x) and φ1(x) =

∞∑
k=1

φ1
kψk(x).

We apply Lemma 3.2 with

f(t) =
+∞∑
−∞

xkeiνkt ,

νk = −ν−k = α2
k ,

2xk = 2x̄−k =
(
φ0

k − iφ1
k

α2
k

)
ψ′

k(ρ) ,

and we get, for any T > 0, the existence of a constant C3 > 0 such that, for every (φ0, φ1) ∈ Y1 × Y−1, we have

∫ T

0

|φx(ρ, t)|2dt ≤ C3

∞∑
k=1

(
|φ0

k|2 +
∣∣∣∣φ1

k

α2
k

∣∣∣∣
2)

|ψ′
k(ρ)|2. (29)

But, with (15), we get

ψ′
k(ρ) =

αk√
π

(
− sin(αkρ) − sinh(αkρ) + µk(cosh(αkρ) − cos(αkρ)))

)
.

Thus, with (22), there exists C4 > 0 such that for every k ∈ N
∗

|ψ′
k(ρ)|2 ≤ C4α

2
k. (30)

With (29) and (30), we get,

∫ T

0

|φx(ρ, t)|2dt ≤ C3C4

(
|αkφ

0
k|2 +

∣∣∣∣φ1
k

αk

∣∣∣∣
2
)

≤ C(‖φ0‖2
Y1

+ ‖φ1‖2
Y−1

). (31)

This concludes the proof of Proposition 3.1. �
We now prove a theorem of existence and regularity for the problem (6)–(9).

Proposition 3.3. Let u ∈ L2(0, π) and (w0, w1) ∈ Y1 × Y−1 then the problem (6)–(9) has a unique solution
w ∈ C0([0, T ], Y1) ∩ C1([0, T ], Y−1).
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Proof. Let τ ∈ [0, T ]. Due to the linearity of (6) we consider the case w0 = w1 = 0. Let g ∈ C∞
0 , in a first time

and let φ be the solution of the following backward problem,

φtt + φxxxx = 0,

φ(0, t) = φx(0, t) = 0,

φxx(L, t) = φxxx(L, t) = 0,

φ(x, τ) = 0, φt(x, τ) = g(x).

By multiplying (6) by φ and integrating by parts, we get,
∫ π

0

w(x, τ)g(x)dx = −
∫ τ

0

u(t)[φx(ξ, t) − φx(η, t)]dt. (32)

Proposition 3.1 implies that, ∣∣∣∣
∫ τ

0

u(t)[φx(ξ, t) − φx(η, t)]dt
∣∣∣∣ ≤ C‖u‖L2(0,T )‖g‖Y−1. (33)

Then w(., τ) ∈ Y1, for every τ ∈ [0, T ]. We conclude as in [23], Proposition 3.1, and get Proposition 3.3. �
With this result of existence at hand, we can study the controllability results. It is done in Sections 4.1

and 4.2.

4. Exact controllability results

Three kinds of exact controllability results are given in this section depending on the location of the piezo-
electric actuator.

To state or controllability results, we use the HUM method intruduced by Lions in [16]. This method
relies on the proof of the observability of the adjoint problem. By multiplying (6)–(9) by the solution φ ∈
C∞([0, π] × [0, T ]) of

φtt + φxxxx = 0,

φ(0, t) = φx(0, t) = 0,

φxx(L, t) = φxxx(L, t) = 0,

φ(x, T ) = 0, φt(x, T ) = 0,

and by integrating by parts on [0, π] × [0, T ], we get successively:

∫ π

0

∫ T

0

wttφ dxdt =
∫ π

0

∫ T

0

wφtt −
∫ π

0

w1(x)φ(x, 0)dx

+
∫ π

0

w0(x)φt(x, 0)dx,

∫ π

0

∫ T

0

wxxxxφ =
∫ π

0

∫ T

0

wφxxxx dxdt,

∫ π

0

∫ T

0

u(t)(H(x− ξ) −H(x− η))xxφ(x, t) dxdt = −
∫ π

0

∫ T

0

u(t)(δξ(x) − δη(x))φx(x, t) dxdt

−
∫ T

0

u(t)φ(π, t)δη(π) dt.
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We get

∫ π

0

w0(x)φt(x, 0) − w1(x)φ(x, 0)dx = −
∫ T

0

u(t)(φx(ξ, t) − φx(η, t)) dt−
∫ T

0

u(t)φ(π, t)δη(π) dt. (34)

Therefore, when η 
= π, we need to find a lower bound of

∫ T

0

|φx(ξ, t) − φx(η, t)|2dt , (35)

in terms of the norm of φ in suitable spaces. To do this we use Ingham’s inequality, Lemma 3.2 to our problem,
as in [4] for Boussinesq equation. Thanks to (20), we have

α2
k − α2

k+1 → +∞.

Thus we apply Lemma 3.2 with

f(t) =
+∞∑
−∞

xkeiνkt ,

νk = −ν−k = α2
k ,

2xk = 2x̄−k =
(
φ0

k − iφ1
k

α2
k

)
(ψ′

k(ξ) − ψ′
k(η)) ,

and we get, for any T > 0, the existence of two constants C3 and C4 > 0 such that, for every (φ0, φ1) ∈ Y1×Y−1,
we have

C3

∞∑
k=1

(
|φ0

k|2 +
∣∣∣∣φ1

k

α2
k

∣∣∣∣
2)

|ψ′
k(ξ) − ψ′

k(η)|2 ≤
∫ T

0

|φx(ξ, t) − φx(η, t)|2dt

≤ C4

∞∑
k=1

(
|φ0

k|2 +
∣∣∣∣φ1

k

α2
k

∣∣∣∣
2)

|ψ′
k(ξ) − ψ′

k(η)|2. (36)

Moreover, thanks to Lemma 2.1 we have

ψ′
k(ξ) − ψ′

k(η) =
αk√
π

[
− 2 sin

(
αk(ξ − η)

2

)
cos
(
αk(ξ + η)

2

)
+ 2µk sin

(
αk(ξ + η)

2

)
sin
(
αk(ξ − η)

2

)

− sinh(αkξ) + sinh(αkη) + µk (cosh(αkξ) − cosh(αkη))

]
. (37)

The estimation of (35) will be obtained by using (36), (37), Lemma 2.1 and diophantine approximations.
The key point of the proof of Theorem 1.1 is the diophantine approximation stated in Lemma 4.1 below.

To prove this lemma, we only need to know the first term of the Taylor expansion of the sequence (αk)k (due
to (20)),

αk = k + o(k).

See also Remark A.2 below.
To prove a controllability result in a larger set of initial conditions (namely Th. 1.2), we need to prove another

result on diophantine approximation (Lem. 4.3) depending on the first four terms of the Taylor expansion of
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(αk) i.e., (due to (20)),

αk = k − 1
2

+ o

(
1
k2

)
.

In this Taylor expansion the second term, namely (− 1
2 ), is rational and the two next terms vanish. Thanks to

this Taylor expansion, we succeed to prove the diophantine approximation, needed for proving Theorem 1.2.
For a different Taylor expansion such a diophantine result may be very difficult or impossible to prove. See also
Remark A.5.

Actually, to prove controllability in the special case of a patch of length equal to the length of the beam, we
only need (16)–(17) and (26).

In the following sections we prove Theorems 1.1, 1.2 and 1.3.

4.1. Controllability for sufficiently regular initial conditions

Let us now prove Theorem 1.1 and show how the set A is constructed. To do this let us introduce the
following notations.

Let |||.|||1 be the distance defined by, for every x ∈ R,

|||x|||1 = min
p∈Z

|x− p|

and |||.|||2 the following shifted distance defined by, for every x ∈ R,

|||x|||2 = min
p∈Z

∣∣∣∣x− p− 1
4

∣∣∣∣ ·
We have to prove the following result on diophantine approximations by using these distances.

Lemma 4.1. For any ε > 0 and i ∈ {1, 2}, there exists Ai ⊂ (0, 1) having its Lebesgue measure equal to 1 such
that, for every ai ∈ Ai, there exists ci > 0 such that, for every k in N

∗, we have

|||αkai|||i ≥ ci
k1+ε

·

To prove this Lemma, we need to rewrite the proof of [3], Lemma 1, page 121, on diophantine approximations.
This proof is completely independent of the controllability results. Therefore we postpone it in appendix (see
Sect. A.1).

The set A ⊂ (0, π)2 is defined by

A =
{

(ξ, η) ∈ (0, π)2,
ξ − η

2π
∈ A1,

ξ + η

2π
∈ A2

}
(38)

where A1 and A2 are defined in Section A.1.

Proof of Theorem 1.1. To begin with, let us prove the following lemma which is a consequence of the construc-
tion of the set A:

Lemma 4.2. For every (ξ, η) in A defined by (38), there exists a constant C5 > 0 such that, we have, for all k
in N


, ∣∣∣∣sin
(
αk(ξ − η)

2

)∣∣∣∣ ≥ C5
αk

1+ε , (39)∣∣∣∣− cos
(
αk(ξ + η)

2

)
+ sin

(
αk(ξ+η)

2

)∣∣∣∣ ≥ C5
αk

1+ε · (40)
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Proof. As ξ−η
2π ∈ A1, we have∣∣∣∣sin

(
αk(ξ − η)

2

)∣∣∣∣ =
∣∣∣∣sin

(
π

(
αk(ξ − η)

2π
− p1

))∣∣∣∣ ≥
∣∣∣∣sin

(
πc1

α1+ε
k

)∣∣∣∣ ≥ c1

α1+ε
k

,

where p1 is the nearest integer with respect to αk(ξ−η)
2π for the distance |||.|||1.

Moreover as ξ+η
2π ∈ A2, we have∣∣∣∣− cos
(
αk(ξ + η)

2

)
+ sin

(
αk(ξ + η)

2

)∣∣∣∣ =
√

2
∣∣∣∣sin

(
αk(ξ + η)

2
− π

4

)∣∣∣∣
=

√
2
∣∣∣∣sin

(
π

(
αk(ξ + η)

2π
− 1

4
− p2

))∣∣∣∣ ,
≥

√
2
∣∣∣∣sin

(
πc2

α1+ε
k

)∣∣∣∣ ≥ √
2
c2

α1+ε
k

,

where p2 is the nearest integer with respect to αk(ξ+η)
2π for the distance |||.|||2.

By letting C5 = min(c1,
√

2c2), we get (39) and (40). This achieves the proof of Lemma 4.2. �
Using Lemma 4.2, (21), (22) (by letting ρ = ξ and ρ = η), (36) and (37), there exists C6 > 0 such that

∫ T

0
[φx(ξ, t) − φx(η, t)]2 dt ≥ C6

∑∞
k=1 α

2
k

(
|φ0

k|2 +
∣∣∣∣φ1

k

α2
k

∣∣∣∣
2) 1
αk

2+2ε

1
αk

2+2ε
·

Therefore we obtain the following observability inequality:

∫ T

0 [φx(ξ, t) − φx(η, t)]2 dt ≥ C6

∑∞
k=1

( ∣∣∣∣ φ0
k

αk
1+ε

∣∣∣∣
2

+
∣∣∣∣ φ1

k

αk
3+ε

∣∣∣∣
2)

·

This concludes the proof of Theorem 1.1. �
Let us now prove an other controllability result in a larger set of initial conditions.

4.2. Controllability result for a larger set of initial conditions

The aim of this section is to prove Theorem 1.2, i.e. a controllability result for a larger set of initial conditions
than those considered in Theorem 1.1.

We have to prove the following result on diophantine approximations:

Lemma 4.3. For any i ∈ {1, 2}, there exists a non-empty and uncountable set Bi ⊂ (0, 1), with Lebesgue
measure 0, such that, for all bi ∈ Bi, there exists c′i > 0 such that, for every k in N

∗, we have

|||αkbi|||i ≥ c′i
k
·

To prove this lemma, we use a previous result on diophantine approximation (more precisely [14], p. 21)
and properties of the sets under consideration in the result given in [14], page 21. The proof of Lemma 4.3 is
completely independent of the controllability results. Therefore we postpone it in appendix (see Sect. A.2).

The set B ⊂ (0, π)2 is defined by

B =
{

(ξ, η) ∈ (0, π)2,
ξ − η

2π
∈ B1,

ξ + η

2π
∈ B2

}
. (41)

By construction, the sets B1, B2 and B are uncountable but with Lebesgue measure 0.
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Proof of Theorem 1.2. To begin with, let us prove the following lemma which is a consequence of the construc-
tion of the set B:

Lemma 4.4. For every (ξ, η) in B defined by (41), there exists a constant C7 > 0 such that, we have

∣∣∣∣sin
(
αk(ξ − η)

2

)∣∣∣∣ ≥ C7

αk
(42)∣∣∣∣− cos

(
αk(ξ + η)

2

)
+ sin

(
αk(ξ+η)

2

)∣∣∣∣ ≥ C7

αk
· (43)

Proof. Due to ξ−η
2π ∈ B1, we have

∣∣∣∣sin
(
αk(ξ − η)

2

)∣∣∣∣ =
∣∣∣∣sin

(
π

(
αk(ξ − η)

2π
− p1

))∣∣∣∣ ≥
∣∣∣∣sin

(
πc′1
αk

)∣∣∣∣ ≥ c′1
αk

where p1 is the nearest integer with respect to αk(ξ−η)
2π for the distance |||.|||1.

Moreover ξ+η
2π ∈ B2 thus, we have

∣∣∣∣− cos
(
αk(ξ + η)

2

)
+ sin

(
αk(ξ + η)

2

)∣∣∣∣ =
√

2
∣∣∣∣sin

(
αk(ξ + η)

2
− π

4

)∣∣∣∣
=

√
2
∣∣∣∣sin

(
π

(
αk(ξ + η)

2π
− 1

4
− p2

))∣∣∣∣
≥

√
2
∣∣∣∣sin

(
πc′2
αk

)∣∣∣∣ ≥ √
2
c′2
αk

where p2 is the nearest integer with respect to αk(ξ+η)
2π for the distance |||.|||2.

By letting C7 = min(c′1,
√

2c′2), we have (42) and (43). This achieves the proof of Lemma 4.4. �

Using Lemma 4.4, (21), (22) (by letting ρ = ξ and ρ = η), (36) and (37), there exists C8 > 0 such that

∫ T

0
[φx(ξ, t) − φx(η, t)]2 dt ≥ C8

∑∞
k=1 α

2
k

(
|φ0

k|2 +
∣∣∣∣φ1

k

α2
k

∣∣∣∣
2) 1

αk
2

1
αk

2
·

Therefore we obtain the following observability inequality:

∫ T

0 [φx(ξ, t) − φx(η, t)]2 dt ≥ C8

∑∞
k=1

(∣∣∣∣φ0
k

αk

∣∣∣∣
2

+
∣∣∣∣ φ1

k

αk
3

∣∣∣∣
2
)
·

This concludes the proof of Theorem 1.2. �

4.3. Controllability in a special case

In this subsection, we prove exact controllability for initial states in Y1 × Y−1, when the length of the patch
is equal to the length of the beam, as stated in Theorem 1.3. Due to (34) and (37), we have to find a lower
bound of

ψ′
k(π) − ψ′

k(0) − ψk(π) =
2αk√
π

⎛
⎝ − sin(αkπ)

1 + sin(αkπ)
sinh(αkπ)

⎞
⎠− ψk(π). (44)
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Due to (15)–(18), (20) and (21), we have

ψk(π) =
2(−1)k

√
π

+ o(1) . (45)

Moreover, thanks to (26), αk > 1/2 and thus sinh(αkπ) > sinh(π/2) > 1. Hence

0 < 1 +
sin(αkπ)
sinh(αkπ)

≤ 2.

Then,
1

1 + sin(αkπ)
sinh(αkπ)

≥ 1
2
· (46)

Futhermore, as αk > 1/2, then cosh(αkπ) ≥ 2, and with (16), −1/2 ≤ cos(αkπ) ≤ 0 we deduce then that
| sin(αkπ)| >

√
3

2 and we obtain, with (44), (45) and (46), the following inequality,

|ψ′
k(π) − ψ′

k(0) − ψk(π)| ≥ Cαk.

Therefore we obtain the following observability inequality:

∫ T

0

[
φx(π, t) − φx(0, t) − φ(π, t)

]2 dt ≥ C
∑∞

k=1

(∣∣∣∣ φ0
k

α−1
k

∣∣∣∣
2

+
∣∣∣∣φ1

k

αk

∣∣∣∣
2
)
·

This proves Theorem 1.3.

Remark 4.5. We easily remark that in paper [23], in this special case, the beam is not controllable in any
space of the form Y2−ε × Y−ε, for ε > 0.

5. Numerical simulations

In this section, we check, on numerical simulations, the exact controllability. We compute also the physical
voltage we need to apply on the piezoelectric-actuator to obtain the exact controllability. Moreover we look at
the physical aspect of this exact controllability. First we give the mechanical values of the beam in an usual
configuration and we describe our numerical algorithm in Section 5.1. Then we give the numerical simulations
in Section 5.2.

5.1. Constants and algorithm

In this section, we apply a spectral method for numerical experiments. For greater interest, we have used
the real values of the beam and of the piezoelectric actuator given in [11]. That is,

• the beam density is ρ = 2970 kg m−3;
• the beam thickness is h = 1.58 × 10−3 m, the beam width is l = 1.2 × 10−2 m and the beam length is
L = 30 × 10−2 m;

• the piezoelectric thickness is ta = 7.4×10−4 m and the constant of charge is da31 = −2.1×10−10 m.V−1,
• the beam Young modulus is Y = 7.8×1010 Pa and the piezoelectric Young modulus is Ya = 6.7×1010 Pa;
• the piezoelectric left position is ξ = 0 m and the piezoelectric right position is η = 3 × 10−2 m.

Moreover, we have,
Ab = hl,

I =
lh3

12
,
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and

Ka =
1
2

βξ(ξ + 1)
1 + 2βξ(3 + 6ξ + 4ξ2)

da31lh
2Y

1
ta

where β = Ya

Y and ξ = ta

h ·
We want to study numerically the problem (1)–(5).
In order to solve this problem numerically, we apply the Hilbert Uniqueness Method we have used in the

previous sections, as an algorithm, see for example [5, 19]. For sufficiently regular initial conditions, the set of
positions of the patch’s ends is dense in (0, L).

Thus we look at the linear application, Λ : (φ0, φ1) ∈ Y−1−ε × Y−3−ε �→ (wt(., 0), w(., 0)) ∈ Y1+ε × Y3+ε

defined as follows:
Let φ be the solution of the following homogeneous problem,

(I)

⎧⎪⎪⎨
⎪⎪⎩

φtt + Y I
ρAb

φxxxx = 0,
φ(0, .) = 0, φx(0, .) = 0,
φxx(L, .) = 0, φxxx(L, .) = 0,
φ(., 0) = φ0, φt(., 0) = φ1.

We then consider w solution of the backward problem,

(II)

⎧⎪⎪⎨
⎪⎪⎩

wtt + Y I
ρAb

wxxxx = 1
ρAb

KaVa(t)[Hxx(x− ξ) −Hxx(x− η)],
w(0, .) = 0, wx(0, .) = 0,
wxx(L, .) = 0, wxxx(L, .) = 0,
w(., T ) = 0, wt(., T ) = 0,

with
Va(t) = φx(ξ, t) − φx(η, t). (47)

Thanks to Theorem 1.1, the application Λ is invertible (except for a Lebesgue measure zero of (ξ, η)). We
approximate this linear application with a matrix computed on a truncated basis of the eigenfunctions defined
in (15).

We then apply the following algorithm.
Let T > 0 and N a positive integer, let w0, w1 some initial conditions in Y3+ε × Y1+ε.
(1) We look for the matrix ΛN ∈ M2N associated with Λ in the finite space generated by (ψk)k=1,...,N .

(a) For k = 1, . . . , N , we solve (I) with the initial conditions φ0(x) = ψk(x) and φ1(x) = 0. We then
solve (II) and get Λ(., k).

(b) For k = 1, . . . , N , we solve (I) with the initial conditions φ0(x) = 0 and φ1(x) = ψk(x). We then
solve (II) and get Λ(., k +N).

(2) Thus, let (φ0, φ1) = Λ−1
N (w1, w0), we solve (I) with these initial conditions and get the desired control

Va by (47).
We implement this algorithm on Matlab to obtain we following figures. These programs can be sent upon
request from the authors.

5.2. Numerical results

In the following simulations, we have taken T = 1, N = 20. For the first case, we have taken as initial
conditions,

w(x, 0) =
1
3
(0.01ψ1(x) + 0.05ψ2(x)), wt(x, 0) =

0.01
3
ψ1(x). (48)

Figure 1 shows that the computed control allows the profile of the beam to be null at T . Thus, this algorithm
based on Hilbert Uniqueness Method can be used to calculate each control for every initial conditions. See also
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Figure 1. Profile of the beam at t = 0, t = 0.25, t = 0.5 and t = 1 s for T = 1 s.

Figure 2. Profile of the beam at t ∈ [0, T ] for T = 1 s.

Figure 2. The computed voltage we need to apply to obtain such an exact controllability result is drawn at
Figure 3. Note that the voltage applied on the piezoelectric actuator is in [−5000 V, 5000 V].

But, if we have in mind to do such real experiences, we have some constraints on the voltage we can apply
on the piezoactuator, as V ∈ [−400 V, 400 V] (see [15]). Hence, with the initial deformation (48), we have to
take a longer time of control. For the control time T = 12, the profile of the beam at different time instants is
given by Figure 4 and the voltage we need to apply is drawn at Figure 5. We check that this voltage is between
−400 V and 400 V.

We have plotted in Figure 6, the L2-norm of the control as a function of the final time T . Since the control
given by HUM gives the optimal control with respect to the quadratic cost

∫ T

0
V 2(t)dt (see [16]), we expect

that this function is nonincreasing. This remark is validated with Figure 6.
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Figure 3. Voltage applied to the piezoelectric actuator for T = 1 s.
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Figure 4. Profile of the beam at t ∈ [0, T ] for T = 12 s.

6. Conclusion

In this paper we get some results that are similar in one way to the results obtained by Tucsnak in [23], namely
Theorems 1.1 and 1.2. To prove these theorems, we need to prove new results in the theory of diophantine
approximations. We can notice that Theorem 1.3 is very different. Indeed, Tucsnack has proved that there is
no controllability in spaces like Yε+2 × Yε for any ε > −2 and we got controllability results in Y1 × Y−1. We did
not manage to prove a result like Tucsnak’s result [23] for the other positions of the patch.
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Figure 5. Voltage applied to the piezoelectric actuator for T = 12 s.
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Appendix A. Diophantine approximations

Let us now prove the diophantine approximations we need to state our main results.

A.1. Proof of Lemma 4.1

In this section we prove Lemma 4.1. To do this let us rewrite the proof of [3], Lemma 1, page 121 (see also
[14], Th. 4, p. 22) in our context and let us prove first the following result

Lemma A.1. For any fixed χ ∈ R
+, and for any ε > 0, the equation

‖αka− χ‖1 <
1

k1+ε
(49)

has only a finite number of integer solutions k > 0, for almost all a ∈ (0, 1).
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Proof of Lemma A.1. Set e > 0 and select K > 1 such that

∑
k≥K

1
k1+ε

≤ e and
χ

αK
< 1. (50)

For each k ≥ K, consider the intervals of radius 1
αkk1+ε with centers

0 + χ

αk
,

1 + χ

αk
, . . . ,

k0 − 1 + χ

αk

where k0 = k0(k) is the largest integer such that

k0 − 1 + χ

αk
< 1. (51)

Consider the a’s such that inequality (49) has infinitely many solutions. Thus, there exist k ≥ K and an integer
p = p(k) such that ∣∣∣∣a− p+ χ

αk

∣∣∣∣ < 1
αkk1+ε

·

As a ∈ (0, 1) then p ≤ k0(k) and thus a is in one of our intervals. The measure of the union of these intervals
is bounded by ∑

k≥K

k0
2

αkk1+ε
·

Thanks to (50) and (51), this bound is lower than

4e,

for every e > 0. Thus the Lebesgue measure of the set of a’s, such that the inequality (49) has infinitely many
solutions, is zero. This concludes the proof of Lemma A.1. �

Applying Lemma A.1 with χ = 0 and χ = 1
4 , we get, for every ε > 0 and i ∈ {1, 2}, the existence of Ai ⊂ (0, 1)

of Lebesgue measure 1 such that, for any ai ∈ Ai, we have

|||αkai|||i ≥ 1
k1+ε

for every k in N, except for a finite number of k (this finite number of such k depends on ai). Therefore, for
any i ∈ {1, 2} and for any ai ∈ Ai, we can find ci > 0 such that we get Lemma 4.1.

Remark A.2. To prove Lemma A.1, we need to know the first term of the Taylor expansion of the sequence
(αk). However to prove a controllability result in a larger set of initial conditions, we need to have a more
precise estimation on the sequence (αk). See Lemma 4.3 where the first three terms of the Taylor expansion of
the sequence (αk) are needed (see also Rem. A.5).
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A.2. Proof of Lemma 4.3

In this section we prove Lemma 4.3. To do this let us recall the following result:

Lemma A.3. ([14], Th. 6, p. 22) There exists a nonempty uncountable subset B̂ of (0, 1), with its Lebesgue
measure null, such that, for every b in B̂, there exists C8 > 0 such that, for any k ∈ N

∗, we have

|||kb|||1 ≥ C8

k
·

We can deduce from Lemma A.3, the following result:

Lemma A.4. Let χ and χ′ be two non negative rational numbers. Then for every b in B̂, there exists C9 > 0
such that, for every k > 0, we have

|||(k + χ′)b+ χ|||1 ≥ C9

k
·

Proof of Lemma A.4. Let (n,m) and (n′,m′) be two couples of relative co-prime integers such that χ = n
m and

χ′ = n′
m′ . Let b ∈ B. Due to Lemma A.3, we have for any k > 0.

|||(k + χ′)b′ + χ|||1 = |||(k +
n′

m′ )b +
n

m
|||1

= |||m(m′k + n′)b + nm′|||1
≥ C8

m(m′k + n′)
≥ C9

k
,

where C9 = C9(n′,m′,m), and we get Lemma A.4. �

Proof of Lemma 4.3. Let B1 = B̂ \ {b ∈ B̂, ∃k ∈ N
∗, αkb ∈ N} and B2 = B̂ \ {b ∈ B̂, ∃k ∈ N

∗, αkb+ 1
4 ∈ N}.

We first prove that B1 and B2 are nonempty.
For every k ∈ N

∗, αk < k. Thus, there exists at most (2k−1) elements b in B̂ such that αkb ∈ N and at most
2k elements b in B̂ such that αkb+1/4 ∈ N. Thus {b ∈ B̂, ∃k ∈ N

∗, αkb ∈ N} and {b ∈ B̂, ∃k ∈ N
∗, αkb+ 1

4 ∈ N}
are countable. As B̂ is uncountable (see [14]), B1 and B2 are non empty and uncountable.

Let i ∈ {1, 2} and let b ∈ Bi. Thanks to Lemma 4.3, there exists C̄i > 0, such that ||| (k − 1
2

)
b|||i ≥ C̄i

k . By
(20), there exists ki ∈ N

∗, such that for every k ≥ ki,
∣∣αk − (k − 1

2

)∣∣ ≤ C̄i

2k . Thus, ∀k ≥ ki, |||αkb|||i ≥ C̄i

2k .
For k < ki, let Dk = k|||αkb|||i, and let D = min0<k<ki Dk. By the construction of Bi, D > 0. Let

ci = min(D, C̄i

2 ), then

∀k ∈ N
∗, |||αkb|||i ≥ ci

k
·

This concludes the proof of Lemma 4.3. �

Remark A.5. Note that the key-point of the proof of Lemma A.4 is the rationality of the first term of the
Taylor expansion of the sequence (αk) and the nullity of the three following terms of the Taylor expansion. For
an other sequence of eigenvalue (αk), the equivalent diophantine approximations seems to be an open question.
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