The aim of this paper is to study a class of domains whose geometry strongly depends on time namely. More precisely, we consider parabolic equations in perforated domains with rapidly pulsing (in time) periodic perforations, with a homogeneous Neumann condition on the boundary of the holes. We study the asymptotic behavior of the solutions as the period
Mots-clés : homogenization, perforated domains, pulsing perforations, multiple scale method
@article{COCV_2003__9__461_0, author = {Cioranescu, Doina and Piatnitski, Andrey L.}, title = {Homogenization in perforated domains with rapidly pulsing perforations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {461--483}, publisher = {EDP-Sciences}, volume = {9}, year = {2003}, doi = {10.1051/cocv:2003023}, mrnumber = {1998711}, zbl = {1065.35044}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2003023/} }
TY - JOUR AU - Cioranescu, Doina AU - Piatnitski, Andrey L. TI - Homogenization in perforated domains with rapidly pulsing perforations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 461 EP - 483 VL - 9 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2003023/ DO - 10.1051/cocv:2003023 LA - en ID - COCV_2003__9__461_0 ER -
%0 Journal Article %A Cioranescu, Doina %A Piatnitski, Andrey L. %T Homogenization in perforated domains with rapidly pulsing perforations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 461-483 %V 9 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2003023/ %R 10.1051/cocv:2003023 %G en %F COCV_2003__9__461_0
Cioranescu, Doina; Piatnitski, Andrey L. Homogenization in perforated domains with rapidly pulsing perforations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 461-483. doi : 10.1051/cocv:2003023. https://www.numdam.org/articles/10.1051/cocv:2003023/
[1] Averaging of partial differential equations with rapidly oscillating coefficients. Soviet Math. Dokl. 16 (1975). | Zbl
,[2] Asymptotic analysis for periodic structures. North-Holland (1978). | MR | Zbl
, and ,[3] Homogenization of random parabolic operators with large potential. Stochastic Process. Appl. 93 (2001) 57-85. | MR | Zbl
, and ,[4] Homogenization in open sets with holes. J. Math. Anal. Appl. 71 (1979) 590-607. | MR | Zbl
and ,[5] Homogenization of reticulated structures. Springer-Verlag (1999). | MR | Zbl
and ,[6] Homogenization and correctors for the heat equation in perforated domains. Ricerche di Mat. L (2001) 115-144. | MR | Zbl
and ,[7] Partial differential equations of parabolic type. Prentice-Hall, Englewood Cliffs (1964). | MR | Zbl
,[8] Homogenization and porous media. Springer-Verlag, IAM 6 (1997). | MR | Zbl
,[9] Homogenization of differential operators and integral functionals. Springer-Verlag (1994). | MR | Zbl
, and ,[10] Homogenization of random parabolic operators. Gakuto International Series. Math. Sci. Appl. 9 (1997), Homogenization and Appl. to Material Sciences, 241-255. | MR | Zbl
and ,[11] Averaging of non selfadjoint parabolic equations with random evolution (dynamics), Preprint INRIA. J. Funct. Anal. (submitted).
and ,[12] Positive linear systems. The method of positive linear operators. Heldermann Verlag , Sigma Ser. Appl. Math. 5 (1989) | Zbl
, and ,[13] Parabolic equations with rapidly oscillating coefficients (In Russian). English transl. Moscow Univ. Math. Bull. 3 (1980) 33-39. | Zbl
,- Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions, Journal of Differential Equations, Volume 289 (2021), p. 95 | DOI:10.1016/j.jde.2021.04.013
- Homogenization of an alternating Robin–Neumann boundary condition via time-periodic unfolding, Nonlinear Analysis: Theory, Methods Applications, Volume 153 (2017), p. 56 | DOI:10.1016/j.na.2016.05.018
- A Two-Scale Homogenization Approach for the Estimation of Porosity in Elastic Media, Trends in Differential Equations and Applications, Volume 8 (2016), p. 89 | DOI:10.1007/978-3-319-32013-7_6
- Multiscale Modeling of Weakly Compressible Elastic Materials in the Harmonic Regime and Applications to Microscale Structure Estimation, Multiscale Modeling Simulation, Volume 12 (2014) no. 2, p. 514 | DOI:10.1137/130921866
- A homogenization approach to flashing ratchets, Nonlinear Differential Equations and Applications NoDEA, Volume 18 (2011) no. 1, p. 45 | DOI:10.1007/s00030-010-0083-0
- Homogenization of Elastic Media with Gaseous Inclusions, Multiscale Modeling Simulation, Volume 7 (2008) no. 1, p. 432 | DOI:10.1137/070705714
- Homogenization of a Porous Medium with Randomly Pulsating Microstructure, Multiscale Modeling Simulation, Volume 5 (2006) no. 1, p. 170 | DOI:10.1137/050629458
Cité par 7 documents. Sources : Crossref