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HOMOGENIZATION IN PERFORATED DOMAINS
WITH RAPIDLY PULSING PERFORATIONS

Doina Cioranescu1 and Andrey L. Piatnitski2, 3

Abstract. The aim of this paper is to study a class of domains whose geometry strongly depends
on time namely. More precisely, we consider parabolic equations in perforated domains with rapidly
pulsing (in time) periodic perforations, with a homogeneous Neumann condition on the boundary of
the holes. We study the asymptotic behavior of the solutions as the period ε of the holes goes to zero.
Since standard conservation laws do not hold in this model, a first difficulty is to get a priori estimates
of the solutions. We obtain them in a weighted space where the weight is the principal eigenfunction
of an “adjoint” periodic time-dependent eigenvalue problem. This problem is not a classical one, and
its investigation is an important part of this work. Then, by using the multiple scale method, we
construct the leading terms of a formal expansion (with respect to ε) of the solution and give the limit
“homogenized” problem. An interesting peculiarity of the model is that, depending on the geometry
of the holes, a large convection term may appear in the limit equation.
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Introduction

The homogenization of elliptic and parabolic problems in perforated domains is a well-developed field. There
are many mathematical and numerical works devoted to the subject (see, for instance [4–6,8,9] and the references
herein). In all these works the geometry of the “holes” was assumed to be fixed in the time variable. In this
case, the homogenization procedure for elliptic and parabolic problems is essentially the same. The averaging
problems for parabolic equations with rapidly oscillating coefficients both in space and time variables, have been
considered in [3, 6, 10] or [13] for example. It was shown in [3, 10] and [13], that for divergence form operators,
“usual” homogenization results hold. In the presence of lower order terms, new phenomena can appear. For
instance, in the case of an operator with coefficients random in time, the limit problem might remain random
(see [11] and [13]).

The aim of this paper is to study a class of domains whose geometry strongly depends on time. Namely, we
consider here a model which involves a microstructure pulsing rapidly in time. Consequently, the corresponding
parabolic operator will be defined in a perforated domain with rapidly pulsing periodic perforations. We assume
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that at the boundary of the holes homogeneous Neumann condition in the space variables is stated, while the
enveloping domain usually coincides with R

n.
Let us point out that since standard conservation laws do not hold in the model, even getting a priori

estimates leads to certain difficulties. We show that energy type estimates can be obtained in a weighted space
where the weight is the principal eigenfunction of an “adjoint” periodic time-dependent eigenvalue problem.
This problem is not a classical one, and its investigation is an important part of this work. Then the multiple
scale method (cf. [1, 2]) is used in order to construct the leading terms of a formal expansion of the solution,
whose justification relies on the “weighted” energy estimates mentioned above.

One interesting peculiarity of the model under consideration is the appearance of a large convection term in
the limit equation. This means that in general, the limit diffusive dynamics can be observed only in moving
spatial coordinates and the corresponding velocity grows like negative power of the microscopic length scale.

The technique also applies to problems in bounded perforated domains with Dirichlet boundary condition
on the exterior boundary while the Neumann exterior condition requires more delicate treatment. This will be
done in a forthcoming work.

The paper is organized as follows. In the first section we introduce necessary notation and pose the problem.
Section 2 deals with auxiliary eigenvalue problems. We are interested in the behaviour of the ground state.
Section 3 is devoted to a priori energy estimates. Then, in the next two sections (4 and 5), we construct and
justify the asymptotic expansion of the solution. Finally, in Section 6 we give an example of a periodic structure
which produces a nontrivial large effective convection.

1. Setting of the problem

We start this section with the construction of a perforated domain depending on time. Suppose we are given
a family of diffeomorphisms of R

n onto itself

Ft : R
n 7−→ R

n, t ∈ (−∞, +∞),

that commute with all the integer shifts along a standard basis {e1, e2, . . . , en} in R
n:

Ft(x+ k) = Ft(x) + k, ∀x ∈ R
n, k ∈ Z

n.

Here we used the the usual notation Z
n for the integer lattice in R

n. Assume moreover, that the family Ft is
smooth and 1-periodic in t.

Denote by B0 the ball centered at the origin of radius 1/4, and by B the following union:

B =
⋃

k∈Zn

(B0 + k).

Let us now introduce for each t ∈ R, the set

G(t) = Ft(Rn \B). (1.1)

By definition one has
G(t) = G(t+ 1), for any t ∈ (−∞, +∞).

Now, the “pulsing” perforated domain Qε
T is defined as follows:

Qε
T =

{
(x, t) ∈ R

n+1
∣∣ 0 ≤ t ≤ T,

x

ε
∈ G

(
t

ε2

)}
, (1.2)

where ε is a positive parameter such that ε→ 0.
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Let us consider the following initial boundary problem:
∂uε

∂t
−∆uε = f in Qε

T

∂uε

∂nε
= 0 on ∂Qε

T

uε|t=0 = g in εG(0).

(1.3)

Here nε = nε(x, t) is the normal vector to ∂Qε
T in the cross-section t = const, i.e., the normal to the bound-

ary ε∂G(t/ε2).
In the sequel we will suppose that the functions f and g are such that{

f = f(x, t) and g = g(x) are sufficiently smooth

f and g decay rapidly as |x| → ∞.
(1.4)

As will be shown in Section 5 below, this assumption is essential for constructing the asymptotic expansion
of uε with respect to ε. The case of general nonsmooth data is also discussed in Section 5; the corresponding
homogenization results are based on the approximation and a priori estimates below.

The existence and uniqueness of the solutions of problem (1.3), for each ε > 0, is a straightforward conse-
quence of the following simple assertion:

Proposition 1.1. Suppose that f and g satisfy assumption (1.4). Then, for any ε > 0, problem (1.3) admits
a unique smooth solution.

Proof. Let us do the following change of variables in (1.3):

x = εFt/ε2

(y
ε

)
·

Note that the inverse function
y = εF−1

t/ε2

(x
ε

)
,

maps εG(t/ε2) onto ε(Rn \B). Consequently, in the new variables y, equation (1.3) can be written in the form
∂uε

∂t
− aε

ij

∂2uε

∂yi∂yj
− bεi

∂uε

∂yi
= f̃ in ε(Rn \B)× (0, T )

∂uε

∂nε
a

= 0 on ε∂B

uε|t=0 = g̃ in ε(Rn \B),

(1.5)

where f̃(y) = f(x(y)), g̃(y) = g(x(y)), and nε
a = nε

a(y, t) is the conormal vector to ε∂B. The coefficients bεi are
smooth periodic functions and aε

ij are defined by

aε
ij(y, t) =

n∑
l=1

∂yi

∂xl

∂yj

∂xl
·

Observe that the geometry of the set where (1.5) is stated is now independent of the time variable, and therefore,
uniqueness and existence result are obtained in a standard way. For details, we refer the reader for instance,
to [7]. �
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Remark 1.2. Under assumption (1.4), uε is a classical solution, decaying rapidly as well as its derivatives, as
|x| → ∞. If f ∈ L2((0, T ) × R

n) and g ∈ L2(Rn), then again standard results show that (1.5) has a unique
solution such that

uε ∈ L2

(
0, T ;H1

(
G

( t

ε2

))
∩ L∞

(
0, T ;L2

(
G

(
t

ε2

)))
·

In both cases we cannot provide estimates of uε, uniform with respect to ε.

Remark 1.3. The geometry independent of time (as studied in [4–6] and [8]) is contained in Definition 1.2.
Indeed, if Ft does not depend on t, then the set Qε

T in problem (1.3) is reduced to a usual perforated domain
Qε

T = Gε × (0, T ) with Gε = εG(0).

2. Auxiliary eigenvalue problems

In this section we consider an auxiliary eigenvalue problem whose ground state will be essential in the further
analysis.

Abusing slightly of the notation, we identify the periodic set G(τ) defined in the preceding section by (1.1),
with a corresponding subset of the n-dimensional torus T n. Then, taking into account the periodicity of G(τ)
in τ , we set

G = {(z, τ) ∈ T n+1 : z ∈ G(τ)}·
Similarly, a space of 1-periodic functions in R

n+1 (or R
n) can be identified with the corresponding functional

space on the torus.

Remark 2.1. In the standard homogenization in periodically perforated domains, the set G is nothing else but
the usual (reference) perforated cell.

Remark 2.2. In the sequel, for a 1-periodic function ψ = ψ(x, t) in R
n+1 (or R

n), we denote by
∫

G
ψ(z, τ) dzdτ

the integral of ψ over T n+1 ∩ G (or over T n ∩ G(τ)). This means that actually the integral is taken over one
periodicity cell, i.e., ∫

[0,1]n+1∩G

ϕ(z, τ) dzdτ =
∫

G

ϕ(z, τ) dzdτ.

Also, given a periodic function, its integral over a subset A of T n+1, coincides with the integral over A as subset
of the periodicity cell [0, 1]n+1.

Consider the problem 
∂v

∂τ
−∆v = 0 in G

∂v∂n = 0 on ∂G,
(2.1)

and its adjoint problem 
∂p

∂τ
+ ∆p = 0 in G

∂p

∂nz
+ nτp = 0 on ∂G,

(2.2)

where n = n(z, τ) is the external normal to ∂G(τ) for a given τ , i.e. the normal constructed in z-variables for
a fixed τ , while nz and nτ are respectively, the z- and τ -coordinates of the total (n + 1)-dimensional external
normal to ∂G.

Problems (2.1) and (2.2) make sense since, by construction, we are looking for solutions that are 1-periodic
in τ .
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Remark 2.3. Observe that the only solution of (2.1) is a constant. Indeed, in the coordinates (y, τ) =
(F−1

τ (z), τ), equation (2.1) has the form
∂v

∂τ
− aij

∂2v

∂yi∂yj
− bi

∂v

∂yi
= 0 in (T n \B)× T 1

∂v

∂na
= 0 on ∂B × T 1,

(2.3)

where

aij(y, τ) =
n∑

l=1

∂yi

∂xl

∂yj

∂xl
, bi(y, τ) =

n∑
l=1

∂2yi

∂x2
l

− ∂yi

∂τ
,

and na is the conormal vector. Now the required statement follows from the standard maximum principle.

The study of problem (2.2) requires more delicate arguments because of the presence of zero-order terms in
the boundary condition. This does not allow us to use the same reasoning as that in Remark 2.3. As a matter
of fact, we have the following result:

Proposition 2.4. Problem (2.2) has a unique (up to a multiplicative constant) solution. This solution is
positive and smooth.

Proof. Consider the auxiliary initial-boundary problem


∂q

∂τ
+ ∆q = 0 in Gneg = {(z, τ) : τ ∈ (−∞, 0), z ∈ G(τ)}

∂q

∂nz
+ nτq = 0 on ∂Gneg

q
∣∣
t=0

= ϕ in G(0),

(2.4)

where ϕ = ϕ(z) is a smooth function. This problem is stated in a half-infinite in time set with a “perforated”
torus in a cross-section.

By virtue of the same change of variables (y, τ) = (F−1
τ (z), τ), we reduce problem (2.4) to an initial-boundary

problem for a uniformly parabolic operator in the direct product (T n \ B) × (−∞, 0) with Fourier boundary
condition on ∂B × (−∞, 0). This transformed problem is standard, and the existence and uniqueness of its
solution is well-known. Thus problem (2.4) is also well-posed.

Then we can define a family of operators

Sτ : ϕ( · ) 7−→ q( · , τ), for −∞ < τ ≤ 0, (2.5)

that map the initial condition into the solution of (2.4) at the time τ .
The analysis of problem (2.2) is essentially based on the properties of the operator S−1. Let us study this

operator in detail. Note first that, thanks to the periodicity of G(τ) in τ , S−1 maps the spaces L2(G(0))
and C(G(0)) in themselves. Moreover, in view of the smoothness properties of the solutions of (2.2), S−1 is
compact in both spaces L2(G(0)) and C(G(0)). Finally, by the maximum principle, the function S−1ϕ(·) is
positive if ϕ is positive.

Observe that by [12], the principal eigenvalue λ0 of S−1 is real, positive and simple, and the corresponding
eigenfunction p0 = p0(z) is real and positive. Moreover, the rest of the spectrum of S−1 belongs to a disk
{|λ| < λ0 − δ} for some δ > 0.
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We would like to show that λ0 = 1. To this end, let us analyze the behaviour of the integral of q over a
cross-section of Gneg. Integrating by parts gives successively,

∫
G(τ2)

q(z, τ2) dz −
∫

G(τ1)

q(z, τ1) dz =

τ2∫
τ1

∫
G(τ)

∂q(z, τ)
∂τ

dz dτ −
τ2∫

τ1

∫
∂G(τ)

q(z, τ)nτ dsz,τ

= −
τ2∫

τ1

∫
G(τ)

∆q dzdτ −
τ2∫

τ1

∫
∂G(τ)

q(z, τ)nτ dsz,τ

= −
τ2∫

τ1

∫
∂G(τ)

(
∂q

∂nz
+ q(z, τ)nτ

)
dsz,τ = 0.

Consequently, the operator S−1 preserves the integral over G(0). Since the first eigenfunction is positive, this
implies that λ0 = 1. This means in turn, that the solution p = p(z, τ) of problem (2.4) with initial data
p0 = p0(z), is a 1-periodic function of τ . Thus, this p is nothing else but a solution of (2.2).

The uniqueness of p follows immediately from the properties of the operator S−1, while its smoothness is a
consequence of standard parabolic estimates. This ends the proof of Proposition 2.4. �

In order to fix the choice of the function p, we will impose the following normalization condition∫
G

p(z, τ) dzdτ = 1. (2.6)

Remark 2.5. From the above considerations, it follows that the operator (Id − S−1) has a one-dimensional
kernel, generated by the function p0.

Now, let us consider the periodic auxiliary problem with the nonhomogeneous data Ψ = Ψ(z, τ) and Φ =
Φ(z, τ), 

∂v

∂τ
−∆v = Ψ in G

∂v

∂n
= Φ on ∂G.

(2.7)

The compatibility condition for this problem is given by the following statement:

Proposition 2.6. Problem (2.7) is solvable if and only if the following equality holds:∫
G

Ψ(z, τ) p(z, τ) dzdτ +
∫

∂G

Φ(z, τ) p(z, τ) dszdτ = 0, (2.8)

where p is the solution of problem (2.2).

Proof. Let us first show that (2.8) is necessary. Suppose that v satisfies (2.7) and let p be the solution of (2.2).
By periodicity, we have ∫

G(1)

v(z, 1) p(z, 1) dz −
∫

G(0)

v(z, 0) p(z, 0) dz = 0.
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By integrating by parts and using equations (2.2) and (2.7), we get successively,

0 =
∫
G

∂
[
v(z, τ)p(z, τ)

]
∂τ

dzdτ −
∫

∂G

v(z, τ) p(z, τ)nτ dszdτ

=
∫
G

p(z, τ)∆v(z, τ) dzdτ −
∫
G

v(z, τ)∆p(z, τ) dzdτ

+
∫
G

Ψ(z, τ) p(z, τ) dzdτ −
∫

∂G

v(z, τ) p(z, τ)nτ dszdτ, (2.9)

whence, by Green’s formula

0 = −
∫

∂G

v(z, τ)
[
∂p(z, τ)
∂nz

+ p(z, τ)nτ

]
dsz,τ

+
∫

∂G

p(z, τ)Φ(z, τ) dszdτ +
∫
G

Ψ(z, τ) p(z, τ) dzdτ

=
∫

∂G

p(z, τ)Φ(z, τ) dszdτ +
∫
G

Ψ(z, τ) p(z, τ) dzdτ. (2.10)

Now, suppose that Ψ and Φ satisfy (2.8), and let v̂ be the solution of the following initial boundary problem:
∂v̂

∂τ
−∆v̂ = Ψ in {(z, τ) | z ∈ G(τ), τ ∈ (0,+∞)}

∂v̂

∂n
= Φ on ∂G

v̂
∣∣
t=0

= 0 inG(0).

(2.11)

Integrating by parts like in (2.9) and (2.10), we get∫
G(0)

v̂(z, 1) p0(z) dz =
∫

G(1)

v̂(z, 1) p(z, 1) dz −
∫

G(0)

v̂(z, 0) p(z, 0) dz = 0, (2.12)

where we have used the fact that
p0(z) = p(z, 0) = p(z, 1).

From (2.12) it follows that v̂(z, 1) is orthogonal in L2(G(0)), to the kernel p0 of the operator (Id − S−1) (see
Rem. 2.5 above). In view of the compactness of S−1, this implies the solvability of the equation(

Id− S?
−1

)
ṽ(z) = v̂(z, 1). (2.13)

Now, let us prove that
S?
−1ṽ(z) = v(z, 1), (2.14)

where v = v(z, τ) solves the problem
∂v

∂τ
−∆v = 0 in {(z, τ) | τ ∈ (0,+∞), z ∈ G(τ)}

∂v

∂n
= 0 on ∂G

v
∣∣
t=0

= ṽ in G(0).

(2.15)
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This means that S?
−1 can be expressed in terms of a solution of the problem adjoint to (2.4), with time going

in the positive direction.
To prove (2.14), it is sufficient to show that∫

G(1)

ϕ(z) v(z, 1) dz =
∫

G(0)

S−1ϕ(z) ṽ(z) dz, (2.16)

for any smooth function ϕ. To do so, let q = q(z, τ) be the solution of (2.4) with data ϕ. By the definition (2.5)
of the operator S−1,

S−1ϕ(z) = q(z,−1).
Then, due to the initial conditions in (2.4) and (2.15), we have

I =
∫

G(1)

ϕ(z) v(z, 1) dτ −
∫

G(0)

S−1ϕ(z) ṽ(z) dτ

=
∫

G(1)

ϕ(z) v(z, 1) dτ −
∫

G(0)

q(z,−1) v(z, 0) dτ.

Integrating by parts and considering the equations from (2.15) and (2.4), we derive that

I =
∫
G

∂
[
q(z, τ + 1)v(z, τ)

]
∂τ

dzdτ −
∫

∂G

q(z, τ + 1) v(z, τ)nτ dszdτ

=
∫
G

q(z, τ + 1)∆v(z, τ) dzdτ −
∫
G

v(z, τ)∆q(z, τ + 1) dzdτ

−
∫

∂G

q(z, τ + 1) v(z, τ)nτ dszdτ.

Finally, Green’s formula and the boundary conditions in (2.4) and (2.15) yield

I =
∫

∂G

q(z, τ + 1)
∂v(z, τ)
∂nz

dsz,τ +
∫

∂G

v(z, τ)
[
∂q(z, τ + 1)

∂nz
+ q(z, τ + 1)nτ

]
dsz,τ = 0.

Hence (2.16) and consequently (2.14), are proved.
To conclude the proof of Proposition 2.6, let us set

v = v̂ + v.

This v is the required solution of (2.7). Recalling that v̂ and v are the solutions of problems (2.11) and (2.15)
respectively, it is obvious that v satisfies the equation and the boundary condition in (2.7).

It remains to show that v is 1-periodic in τ . To do so, observe that by using successively (2.13) and (2.14),
we have

v(z, 1) = v̂(z, 1) + v(z, 1) = ṽ(z)− S?
−1ṽ(z) + ṽ(z, 1) = ṽ(z).

But from the initial conditions in problems (2.11) and (2.14), one has

ṽ(z) = v̂(z, 0) + v(z, 0) = v(z, 0),

and this ends the proof of Proposition 2.6. �
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3. Energy estimates

This section is devoted to qualified energy estimates for problem (1.3) and for the following problem with
more general data than (1.3): 

∂vε

∂t
−∆vε = f in Qε

T

∂vε

∂nε

∣∣∣
∂Qε

T

= ψ in ∂Qε
T

vε|t=0 = g in εG(0).

(3.1)

To simplify the notation we set

Gε(t) = εG

(
t

ε2

)
(see definitions (1.1) and (1.2) of domains G(t) and Qε

T , respectively).

Proposition 3.1. Let f ∈ L2(Rn × (0, T )), g ∈ L2(Rn) and ψ ∈ L2(∂Qε
T ). Then the solution of problem (1.3)

satisfies the following estimate:∫
Qε

T

∣∣∇uε(x, t)
∣∣2 dxdt+

∫
Gε(T )

[
uε(x, T )

]2 dx ≤ C
(∥∥f∥∥2

L2(Rn×(0,T ))
+

∥∥g∥∥2

L2(Rn)

)
(3.2)

while the solution of problem (3.1) satisfies the estimate∫
Qε

T

∣∣∇vε(x, t)
∣∣2 dxdt+

∫
Gε

t

[
vε(x, T )

]2 dx ≤ C
(
‖f‖2

L2(Rn×(0,T )) + ‖g‖2
L2(Rn) + ε−1‖ψ‖2

L2(∂Qε
T )

)
. (3.3)

If moreover, ψ is in L2(0, T ;H1(Gε(·))), then the following estimate holds:∫
Qε

T

∣∣∇vε(x, t)
∣∣2 dxdt+

∫
Gε

t

[
vε(x, T )

]2 dx ≤ C
(
‖f‖2

L2(Rn×(0,T )) + ‖g‖2
L2(Rn) + ε−2‖ψ‖2

L2(0,T ;H1(Gε(·)))
)
. (3.4)

In all these estimates, the constant C is independent of ε.

Proof. Let p = p(x, t) be the solution of problem (2.2). Multiplying the equation in (3.1) by vε(x, t)p(x/ε, t/ε2)
and integrating by parts, we obtain after simple transformations

∫
Qε

T

p

(
x

ε
,
t

ε2

) ∣∣∇vε(x, t)
∣∣2 dxdt+

∫
Gε(T )

p

(
x

ε
,
T

ε2

) [
vε(T, x)

]2 dx =
∫

Qε
T

p
(x
ε
,
t

ε2

)
vε(x, t) f(x, t) dxdt

+
∫

Gε(0)

p
(x
ε
, 0

)
g2(x) dx+

∫
∂Qε

T

p

(
x

ε
,
t

ε2

)
ψ(x, t) vε(x, t) dsxdt. (3.5)

For problem (1.3), relation (3.5) implies immediately estimate (3.2) with a constant C independent of ε.
In the case of problem (3.1), let us introduce the rescaled coordinates

τ =
t

ε2
, z =

x

ε
·
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Observe that in these new coordinates, for any sufficiently smooth function U = U(x, t), we have

∫
∂G(τ)

[
U(εz, ε2τ)

]2

dsz ≤ c

 ∫
G(τ)

[
U(εz, ε2τ)

]2 dz +
∫

G(τ)

∣∣∇zU(εz, ε2τ)
∣∣2 dz

 ,

since the shape of the cross-section {(z, τ) : τ = const, (εz, ε2τ) ∈ Qε
T } does not depend on the parameter ε.

Integrating this estimate in τ and going back to the initial variables, we obtain the following bound:

∫
∂Qε

T

U2(x, t) dsx,t ≤ c

ε−1

∫
Qε

T

U2(x, t) dτ + ε

∫
Qε

T

|∇xU(x, t)|2 dτ

 . (3.6)

Let vε be the solution of problem (3.1). Then by the Schwarz inequality and using (3.6), one gets∣∣∣∣∣∣∣
∫

∂Qε
T

vε(x, t) ψ(x, t) dsx,t

∣∣∣∣∣∣∣ ≤
 ∫

∂Qε
T

[
vε(x, t)

]2 dsx,t


1/2  ∫

∂Qε
T

ψ2(x, t) dsx,t


1/2

≤ ε−1/2 ‖vε‖L2(0,T ;H1(Gε(·))) ‖ψ‖L2(∂Qε
T ) , (3.7)

which used in (3.5) gives easily estimate (3.3) with a constant independent of ε.
Suppose now that the boundary data ψ in (3.1), is the restriction to ∂Qε

T of a function from L2(0, T ;H1(Gε(·))).
For such a case, inequality (3.7) can be modified as follows:∣∣∣∣∣∣∣

∫
∂Qε

T

vε(x, t)ψ(x, t) dsx,t

∣∣∣∣∣∣∣ ≤ ε−1 ‖vε‖L2(0,T ;H1(Gε(·))) ‖ψ‖L2(0,T ;H1(Gε(·))) ,

which, together with (3.5) and (3.7), leads to estimate (3.4). This ends the proof of Proposition 3.1. �

4. Formal asymptotic expansions

The aim of the section is to construct a formal asymptotic expansion for the solution of problem (1.3). To
do so, we make use of the ideas of the multiple scale asymptotic decomposition method (see, for example [1,2]).
However, the presence of moving boundaries suggests that for small ε, the problem might involve large convection
terms. In order to take them into account, we construct the principal terms of the expansion in the following
form:

uε(x, t) ∼ u0

(
x− α

ε
t, t

)
+ ε

{
∇xu0

(
x− α

ε
t, t

)
χ

(
x

ε
,
t

ε2

)
+ u1

(
x− α

ε
t, t

)}
+ ε2

{
∇x∇xu0

(
x− α

ε
t, t

)
ξ

(
x

ε
,
t

ε2

)
+∇xu0

(
x− α

ε
t, t

)
χ

(
x

ε
,
t

ε2

)}
+ · · · (4.1)

where χ and ξ are respectively, a periodic vector-function and a periodic matrix-function, and α is a constant
vector, α = (α1, . . . , αn).
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Note that ((x− (α/ε), t) plays the role of slow variables, while z = x/ε and τ = t/ε2, are the fast ones. Recall
that the basic idea of the multiple scale asymptotic decomposition method, is to suppose that the slow and the
fast variables are independent.

In the sequel, we will use systematically the following derivation formulae:
∂

∂x
g

(
x,
x

ε

)
=

(
∂g(x, z)
∂x

+ ε−1 ∂g(x, z)
∂z

)∣∣∣∣
z=x/ε

∂

∂t
g

(
t,
t

ε2

)
=

(
∂g(t, τ)
∂t

+ ε−2 ∂g(t, τ)
∂τ

)∣∣∣∣
τ=t/ε2

.
(4.2)

Substituting (4.1) in (1.3), applying (4.2) and equating the power-like terms of ε, we obtain the system
[
∂χ(z, τ)
∂τ

−∆zχ(z, τ)
]
∇xu0

(
x− α

ε
t, t

)
= − α∇xu0

(
x− α

ε
t, t

)
∂χ(z, τ)
∂n

∇xu0(x− α

ε
t, t) + n(z, τ)∇xu0(x− α

ε
t, t) = 0.

(4.3)

For ` = 1, . . . , n, let χ` = χ`(z, τ) be a solution of the problem


∂χ`

∂τ
−∆χ` = −α` in G

∂χ`

∂n
= −n` on ∂G.

(4.4)

By Proposition 2.6, the compatibility condition in the last equation reads

α` = −
∫

∂G

p(z, τ)n`(z, τ) dszdτ. (4.5)

At the next step of the identification, we get

[
∂ξ(z, τ)
∂τ

−∆zξ(z, τ)
]
∇x∇xu0

(
x− α

ε
t, t

)
+

(
∂

∂s
u0

(
x− α

ε
t, s

))∣∣∣∣
s=t

−∆xu0

(
x− α

ε
t, t

)
+ 2∇zχ(z, τ)∇x∇xu0

(
x− α

ε
t, t

)
−αχ(z, τ)∇x∇xu0

(
x− α

ε
t, t

)
+

[
∂χ(z, τ)
∂τ

−∆zχ(z, τ)− α

]
∇xu1

(
x− α

ε
t, t

)
= f(x, t)

∂ξ(z, τ)
∂n

∇x∇xu0

(
x− α

ε
t, t

)
+ n(z, τ)∇x∇xu0

(
x− α

ε
t, t

)
χ(z, τ)

+
∂χ(z, τ)
∂n

∇xu1

(
x− α

ε
t, t

)
+ n(z, τ)∇xu1

(
x− α

ε
t, t

)
= 0.

(4.7)

The compatibility condition for (4.6) is (see again Prop. 2.6)(
∂

∂s
u0

(
x− α

ε
t, s

))∣∣∣∣
s=t

− aij
∂2

∂xi∂xj

(
u0

(
x− α

ε
t, t

))
= f(x, t), (4.7)
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where the constants aij , the “homogenized coefficients”, are defined by

aij = δij + αi

∫
G

χi(z, τ) p(z, τ) dzdτ + 2
∫
G

∂χj(z, τ)
∂zi

p(z, τ) dzdτ

+
∫

∂G

χj(z, τ) p(z, τ)ni(z, τ) dszdτ. (4.8)

Letting

Uε
0 (x, t) = u0

(
x− α

ε
t, t

)
, (4.9)

equation (4.7) can be rewritten in the form

∂Uε
0

∂t
− aij

∂2Uε
0

∂xi∂xj
+
αi

ε

∂Uε
0

∂xi
= f in R

n × (0, T ). (4.10)

In the new coordinates

y = x− α

ε
t, (4.11)

equation (4.7) reads

∂u0(y, t)
∂t

− aij
∂2u0(y, t)
∂yi∂yj

= f
(
y +

α

ε
t, t

)
in R

n × (0, T ). (4.12)

Considering (4.4) and (2.2), and integrating by parts in (4.8), one can rewrite aij as follows:

aij =
∫
G

(Id+∇zχ(z, τ)) p(z, τ) (Id +∇zχ(z, τ))? dzdτ. (4.13)

Since the vector-function χ(z, τ) is periodic, the matrix aij defined by (4.8), is positive definite (for the proof
see for instance [2, 5] or [8]). Therefore, equation (4.12), together with the initial condition

u0(x, t)
∣∣
t=0

= g(x),

is a well-posed Cauchy problem for determining u0.
Making one more step in the identification in problem (1.3), one can equate to zero the terms of order ε in

the equation and the terms of order ε2 in the boundary condition. In this way we get an additional term in the
expansion, namely the function u1.

Let us summarize the above results in the following statement:

Theorem 4.1. Suppose that f and g satisfy assumption (1.4). Then the solution uε of problem (1.3), can be
written in the form (4.1), i.e.,

uε(x, t) ∼ u0

(
x− α

ε
t, t

)
+ ε

{
χ`

(
x

ε
,
t

ε2

)
∂u0

∂y`

(
x− α

ε
t, t

)
+ u1

(
x− α

ε
t, t

)}
+ · · · , (4.14)

where χ`, for ` = 1, . . . , n, satisfies problem (4.4) with α` given by (4.5).



HOMOGENIZATION IN PERFORATED DOMAINS WITH RAPIDLY PULSING PERFORATIONS 473

If α 6= 0, the function u0 = u0(y, t) is the unique solution of the limit problem
∂u0

∂t
− aij

∂2u0

∂yi∂yj
= 0 in R

n × (0, T )

u0|t=0 = g in R
n,

(4.15)

where the coefficients aij are defined by (4.13).
If α = 0, the function u0 = u0(y, t) is the unique solution of the limit problem

∂u0

∂t
− aij

∂2u0

∂yi∂yj
= f in R

n × (0, T )

u0|t=0 = g in R
n.

Corollary 4.2. Suppose that uε is the solution of the problem
∂uε

∂t
−∆uε = fε in Qε

T

∂uε

∂nε
= 0 on ∂Qε

T

uε|t=0 = g in εG(0),

where fε is defined by
fε(x, t) = f

(
x− α

ε
, t

)
in R

n × (0, T ), (4.16)

and suppose that f and g satisfy assumption (1.4). Then uε can be written in the form (4.14) where u0 satisfies
the limit problem 

∂u0

∂t
− aij

∂2u0

∂yi∂yj
= f in R

n × (0, T )

uε|t=0 = g in R
n.

(4.17)

Proof. Due to assumption (1.4), the right-hand side in (4.12) vanishes as ε→ 0, whence (4.15).
Under hypothesis (4.16), the limit equation for u0 preserves a non-zero function on the right-hand side.

Indeed, in this case equation (4.10) reads

∂Uε
0

∂t
(x, t)− aij

∂2Uε
0

∂xi∂xj
(x, t) +

αi

ε

∂Uε
0

∂xi
(x, t) = fε(x, t) = f

(
x− α

ε
, t

)
,

which, by the change of variables (4.11) and taking into account (4.9), leads immediately to system (4.17). �
Remark 4.3. Notice that in the case of holes with geometry independent of time, formula (4.13) gives the
classical “homogenized” coefficients (see for instance [2] and [7] and for further details [14]). Indeed, in this
case, the function p is equal to a constant C and by the normalization condition (2.6), this constant must be
C = 1/|G|, where |G| is the volume of G.

Remark 4.4. In the presence of proper symmetries, the convection coefficient α in the limit equation is equal
to 0. We provide here two such cases:

• the set Gt, for each t, is symmetric with respect to some point x0 that does not depend on t. It is the
case of the “pulsing” structure from Figure 1;

• in the two-dimensional case, there are t0 6= 0 and θ ∈ (0, 2π), such that for each t, the set G(t+t0)

coincides with the rotation of Gt of angle θ. It is the case of the “snakes-like” structure from Figure 2.
In Section 6 below, we will give an example of a geometry without such symmetries, for which α 6= 0.
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Figure 1. “Pulsing” structure.

Figure 2. Helicoidal (“snakes-like”) structure.

5. Justification of the asymptotic expansion

In this section we justify the asymptotic expansion of the solution uε constructed in the previous section,
and prove error estimates.
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Denote by W ε the sum of the first five terms of expansion (4.1), i.e.,

W ε(x, t) = u0

(
x− α

ε
t, t

)
+ ε

{
∇xu0

(
x− α

ε
t, t

)
χ

(
x

ε
,
t

ε2

)
+ u1

(
x− α

ε
t, t

)}
+ ε2

{
∇x∇xu0

(
x− α

ε
t, t

)
ξ

(
x

ε
,
t

ε2

)
+∇xu0

(
x− α

ε
t, t

)
χ

(
x

ε
,
t

ε2

)}
·

Theorem 5.1. Suppose that the data of problem (1.3) are sufficiently smooth. Then the following estimates
hold:

‖uε −W ε‖L2(0,T ;H1(Gε(·))) ≤ Cε2
(‖f‖L2(0,T ;H5(Rn)) + ‖ϕ‖H5(Rn)

)
(5.1)

and

‖uε −W ε‖C(Qε
T )) ≤ Cε2

(
‖f‖L∞(0,T ;W 5,∞(Rn)) + ‖ϕ‖W 5,∞(Rn)

)
. (5.2)

Proof. Substituting the difference uε −W ε in (1.3), and recalling (4.7) lead to an equation of the form

∂[uε(x, t) −W ε(x, t)]
∂t

−∆[uε(x, t)−W ε(x, t)] = ε2
∑

i

β1,i

(
x

ε
,
t

ε2

)
v1,i(x, t)

+ε3
∑

i

β2,i

(
x

ε
,
t

ε2

)
v2,i(x, t) in Qε

T

with the following boundary condition on ∂Qε
T :

∂(uε −W ε)
∂nε

∣∣∣
∂Qε

T

= ε3
∑

i

β3,i

(
x

ε
,
t

ε2

)
.v3,i(x, t).

The functions βl,i = βl,i(z, τ) are smooth and periodic in z and τ ; the functions v1,i and v2,i are linear combi-
nations of fourth and fifth order derivatives of u0, third and fourth of u1 and second and third derivatives of f ,
all the derivatives are taken in space variables. Similarly, the function v3,i is a linear combination of third and
fourth order derivatives of u0 and second and third derivatives of u1.

Due to standard parabolic estimates, the function u0 = u0(x, t) belongs to the space L2(0, T ;H5(Rn)), and
moreover, one has the following inequality:

‖u0‖L2(0,T ;H5(Rn)) ≤ C
(‖f‖L2(0,T ;H5(Rn)) + ‖ϕ‖H5(Rn)

)
,

where C is a constant independent of u0, f and ϕ. The same is true for u1 too. Consequently, estimates (5.1)
and (5.2) follow immediately from Proposition 3.1. �

Now, denote by Zε the sum of the first two terms of the expansion (4.1), i.e.,

Zε(x, t) = u0

(
x− α

ε
t, t

)
+ ε

{
∇xu0

(
x− α

ε
t, t

)
χ

(
x

ε
,
t

ε2

)
+ u1

(
x− α

ε
t, t

)}
·

Then, the following theorem holds:

Theorem 5.2. For any f ∈ L2(0, T ;L2(Rn)) and ϕ ∈ H1(Rn), one has

lim
ε→0

‖uε − Zε‖L2(0,T ;H1(Rn)) = 0. (5.3)
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For f ∈ L2(0, T ;L2(Rn)) and ϕ ∈ L2(Rn) we have

lim
ε→0

‖uε − u0‖L2(0,T ;L2(Rn)) = 0. (5.4)

Proof. In both cases, in order to prove the result it is sufficient to approach f and ϕ by smooth functions.
Let us prove convergence (5.3). Suppose that the sequences {fn} ⊂ C∞(0, T ;C∞0 (Rn)) and {ϕn} ⊂ C∞0 (Rn),

are such that  limn→∞ ‖f − fn‖L2(0,T ;L2(Rn)) = 0

limn→∞ ‖ϕ− ϕn‖H1(Rn) = 0.
(5.5)

Denote by uε
n the solution of problem (1.3) with the data fn and ϕn, and by Uε

n,1 the sum of the first four
terms of the corresponding asymptotic expansion. Then we have

‖uε − Zε‖L2(0,T ;H1(Rn)) ≤ ‖uε − uε
n‖L2(0,T ;H1(Rn)) +

∥∥uε
n − Uε

n,1

∥∥
L2(0,T ;H1(Rn))

+
∥∥Uε

n,1 − Zε
∥∥

L2(0,T ;H1(Rn))
.

By (5.5) and Proposition 3.1 the first term on the right-hand side converges to 0, as n → ∞, uniformly in ε.
Similar convergence of the last term is a simple consequence of standard parabolic estimates. Finally, the middle
term converges to 0, as ε→ 0, by Theorem 5.1. Hence (5.2) is proved.

Finally, convergence (5.4) is obtained by the same arguments. �

Remark 5.3. In the case of smooth data, one can construct higher order terms in the asymptotic expansion (4.1)
and obtain estimates in more regular functional spaces.

6. An example

In order to show that in general α 6= 0, let us consider a particular case of problem (1.3), when the evolution
of the holes in the rescaled coordinates τ = t/ε2, y = x/ε, y ∈ R2, is defined as follows:

Gt =

{
G0 + te1, 0 ≤ t ≤ T,

Gt = G0 + (T − t)e1, T ≤ t ≤ 2T,

where e1 = (1, 0) is the first coordinate unit vector, and Gt is a 2T -periodic function. The shape of a cross-
section of the structure and the shape of holes do not depend on time. They are shown in Figures 3 and 4.

Notice that each hole merely walks in time along a “zig-zag” line as shown in Figure 5.
We have two “free” parameters, T and L, at our disposal, and want to determine them to get α 6= 0. We

begin by introducing a 2T -periodic function

γ(t) =

{
t, 0 ≤ t ≤ T,

T − t, T ≤ t ≤ 2T,

and make the change of coordinates

(x, t) −→
(
x+ ε γ

(
t

ε2

)
e1, T

)
. (6.1)
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Figure 3. Shape of G0 (set of white “holes”). Figure 4. Shape of a hole.

Figure 5. “Zig-zag” structure.

In the new coordinates (still denoted (x, t)), problem (1.3) (with f ≡ 0), has the form
∂uε

∂t
−∆uε − 1

ε
γ′

(
t

ε2

)
∂uε

∂x1
= 0 in Qε

T

∂uε

∂nε
= 0 on ∂Gε

0

uε|t=0 = g in Gε
0,

(6.2)
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where Gε
0 = εG0. Obviously, γ′ is a 2T−periodic function, and

γ′(t) =

{
1, 0 ≤ t ≤ T,

−1, T ≤ t ≤ 2T.

Observe that in problem (6.2) the geometry of holes is independent of time, that is the shape and the position
of the holes is now fixed. Thus, we have a “classical” homogenization problem with oscillating coefficients set
in a perforated domain. However, the new operator has large oscillating coefficients.

Taking into account the change of variables (6.1), we immediately see that the homogenized problems corre-
sponding to (1.3) (or (1.5)) and (6.2) coincide, so we will work with the latter one.

Let us now consider the following auxiliary “cell” problem whose unknown is p = p(z, τ):
∂p

∂τ
+ ∆p− γ′(τ)

∂p

∂z1
= 0 in G0

∂p

∂n
− γ′(τ)n1(z) p = 0 on ∂G0,

(6.3)

to be studied in the space of periodic in z and τ functions. In the same way as in Section 3, one can prove
that (6.3) has a unique (up to a multiplicative constant) solution and this solution is positive. Let us denote
by Gper

0 the following set:
Gper

0 = [0, L+ 1] × [0, 1] ∩G0.

It is easy to see that ∫
Gper

0

p(z, τ) dz = C,

where C is a constant independent of τ . We fix the choice of p by imposing the normalization

C = 1. (6.4)

Also, like in Section 3, one can show that for periodic functions f = f(z, τ) and g = g(z, τ), the system
∂v

∂τ
−∆v − γ′(τ)

∂v

∂z1
= f in G0

∂v

∂n
= g on ∂G0

has a solution in the space of periodic function if and only if

2T∫
0

dτ
∫

Gper
0

f(z, τ) p(z, τ) dz +

2T∫
0

dτ
∫

∂Gper
0

g(z, τ) p(z, τ) dsz = 0. (6.5)

Furthermore, in the same way as in Section 4, we obtain uniform a priori estimates for the solution uε of
problem (6.2). Then, following the scheme of Section 5, we represent uε in the form

uε(x, t) ∼ u0 (x− α t, t) + ε

{
∇xu0 (x− α t, t)χ

(
x

ε
,
t

ε2

)
+ u1

(
x− α t, t

)}
+ ε2∇x∇xu0

(
x− α t, t

)
ξ

(
x

ε
,
t

ε2

)
+ · · · (6.6)
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Due to the symmetry of G0 in z2, the vector α must be of the form α = (α, 0).
Substituting (6.6) in (6.2), and equating the power-like terms of ε, we obtain in particular, the following

problem to determine χ1 = χ1(z, τ):
∂χ1

∂τ
−∆χ1 − γ′(τ)

∂χ1

∂z1
= α+ γ′(τ) in G0

∂χ1

∂n
= −n1 on ∂G0.

Thanks to the evident identities

2T∫
0

dτ
∫

Gper
0

γ′(τ) p(z, τ) dz =
2T∫
0

γ′(τ) dτ = 0,∫
Gper

0

αp(z, τ) dz = 2Tα,

the compatibility condition (6.5) for system (6.3) reads,

2Tα =

2T∫
0

dτ
∫

∂Gper
0

n1(z) p(z, τ) dsz . (6.7)

Our aim is now to select the parameters L and T so that α 6= 0. To this end note first that on the interval [0, T ],
equation (6.3) takes the form 

∂p

∂τ
+ ∆p− ∂p

∂z1
= 0 in Gper

0

∂p

∂n
− n1 p = 0 on ∂Gper

0 .

Moreover, one has ∫
G0

p(z, τ) dz = 1, ‖p( · , T )‖L2(G0) ≤ C,

where the latter relation is a standard parabolic estimate. It is uniform in T .
We consider the behaviour of a solution p(z, τ) on the time interval (0, T ) for large T . The results from

Section 3 imply the convergence of p, as (t− T ) → −∞, at an exponential rate, towards the unique solution of
the elliptic problem 

∆p1 − ∂p1

∂z1
= 0 in Gper

0

∂p1

∂n
− n1 p1 = 0 on ∂Gper

0 ,∫
Gper

0

p1(z) dz = 1.

(6.8)

Therefore, the contribution of the set Gper
0 × [0, T ] to the integral in (6.7), is given by

T∫
0

dτ
∫

∂Gper
0

n1(z) p(z, τ) dsz =
[
1 + o(1)

]
T α1,
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Figure 6. Cross-sections in G0.

where

α1 =
∫

∂Gper
0

n1(z) p1(z) dsz

and o(1) vanishes as T →∞.
Similarly,

2T∫
T

dτ
∫

∂Gper
0

n1(z) p(z, τ) dsz =
[
1 + o(1)

]
T α2 ,

where

α2 =
∫

∂Gper
0

n1(z) p2(z) dsz,

and p2 = p2(z) solves the problem 

∆p2 +
∂p2

∂z1
= 0 in Gper

0

∂p2

∂n
− n1 p2 = 0 on ∂Gper

0∫
Gper

0

p2(z) dz = 1.

It is now clear that it is sufficient to find L > 0 such that α1 6= −α2. To this end, we study the behaviour of
the integrals of p1 and p2 over the cross sections H1(z1), H2(z1) and H3(z1) (see Fig. 6 below).
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So, we have to compute the following integrals:

I1(z1) =

+1/6∫
−1/6

p1(z) dz2, 0 ≤ z1 ≤ L

I2(z1) =

2/3∫
1/3

p1(z) dτ2, −1
6
≤ z1 ≤ L

and (due to the periodicity)

I3(z1) =

1∫
0

p1(z) dτ2, L ≤ z1 ≤ L+
5
6
·

Integrating (6.8) over each of the above cross sections, we get the equations

d2Ii
dz2

1

− dIi
dz1

= 0, i = 1, 2, 3,

with
dI1
dτ1

(0)− I1(0) = 0,

whence
I1(z1) = C1 ez1 , I2(z1) = C2 ez1 + d2, I3(z1) = C3 ez1 + d3,

where Ci and di are constants. By the Harnack inequality one has

p1(A) ≤ c p1(C), p1(A) ≤ c p1(B),

with a constant c independent of L. In view of the monotonicity of I2, these bounds imply the estimate

I2(z1) ≥ c1 p1(A), −1
6
≤ z1 ≤ L.

By integrating, we get

c1 p1(A)L ≤
L∫

− 1
6

I2(z1) dz1 ≤ 1,

where again we made use of the normalization condition (6.4). Consequently,

p1(A) ≤ c2
1
L
·

Similarly, p1(D) ≤ c p1(A) ≤ c3
1
L , and hence

I3(z1) ≤ c4
1
L
, L ≤ z1 ≤ L+

5
6
·

Finally, using the obvious bound I1(0) ≤ c5
e−L

L , we deduce the estimate

|α1| =

∣∣∣∣∣∣∣
∫

∂Gper
0

n1(z) p1(z) dsz

∣∣∣∣∣∣∣ ≤ I1(0) + I3(L) + I3

(
L+

5
6

)
≤ c6

1
L
· (6.9)
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In the same way, defining

I1(z1) =

+1/6∫
−1/6

p2(z) dz2, 0 ≤ z1 ≤ L

I2(z1) =

2/3∫
1/3

p2(z) dz2, −1
6
≤ z1 ≤ L

I3(z1) =

1∫
0

p2(z) dz2, L ≤ z1 ≤ L+
5
6
,

we derive the following equations:
d2Ii

dz2
1

+
dIi

dz1
= 0, i = 1, 2, 3,

with
dI1

dz1
(0) + I1(0) = 0.

This yields
I1(z1) = C1 e−z1 , I2(z1) = C2 e−z1 + d2, I3(z1) = C3 e−z1 + d3.

In particular,
p2(A) ≤ c7 C1 e−L,

and by the Harnack inequality,
p2(A) + p2(B) + p2(D) ≤ c8 C1 e−L.

The last inequality, after straightforward computations, leads to

L∫
0

I1(z1) dz1 ≤ C1 (1− L),

L∫
−1/6

I2(z1) dz1 ≤ c9C1 L e−L,

L+5/6∫
L

I3(z1) dz1 ≤ c10C1 e−L.

The normalization condition (6.4) implies that the sum of the three integrals above is equal to 1, so from (6.10)
we have that

C1 (1− e−L + c9 L e−L + c10 e−L) ≥ 1.
Consequently, for L sufficiently large

C1 ≥ 1
2
·

On the other hand,
C1 ≤ 2,

and we have
+1/6∫
−1/6

p2(0, z2) dz2 = I1(0) ≥ 1
2

and also

−1/6∫
−1/3

p2(L, z2) dz2 +

1/3∫
1/6

p2(L, z2) dz2 +

1/3∫
−1/3

p2

(
L+

5
6
, z2

)
dz2 ≤ I3(L) + I3

(
L+

5
6

)
≤ 2c10 e−L.
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The last two inequalities imply

α2 =
∫

∂Gper
0

n1(z) p2(z) dsz ≥ 1
4
,

for L sufficiently large. Now, combining this relation with (6.9), we conclude that in this case,

α1 + α2 6= 0.
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