We present a new class of averaging lemmas directly motivated by the question of regularity for different nonlinear equations or variational problems which admit a kinetic formulation. In particular they improve the known regularity for systems like
Mots-clés : regularizing effects, kinetic formulation, averaging lemmas, hyperbolic equations, line-energy Ginzburg-Landau
@article{COCV_2002__8__761_0, author = {Jabin, Pierre-Emmanuel and Perthame, Beno{\^\i}t}, title = {Regularity in kinetic formulations via averaging lemmas}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {761--774}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002033}, mrnumber = {1932972}, zbl = {1065.35185}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2002033/} }
TY - JOUR AU - Jabin, Pierre-Emmanuel AU - Perthame, Benoît TI - Regularity in kinetic formulations via averaging lemmas JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 761 EP - 774 VL - 8 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2002033/ DO - 10.1051/cocv:2002033 LA - en ID - COCV_2002__8__761_0 ER -
%0 Journal Article %A Jabin, Pierre-Emmanuel %A Perthame, Benoît %T Regularity in kinetic formulations via averaging lemmas %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 761-774 %V 8 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2002033/ %R 10.1051/cocv:2002033 %G en %F COCV_2002__8__761_0
Jabin, Pierre-Emmanuel; Perthame, Benoît. Regularity in kinetic formulations via averaging lemmas. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 761-774. doi : 10.1051/cocv:2002033. https://www.numdam.org/articles/10.1051/cocv:2002033/
[1] Line energies for gradient vector fields in the plane. Calc. Var. Partial Differential Equations 9 (1999) 327-355. | MR | Zbl
, and ,[2] Interpolation spaces, an introduction. Springer-Verlag, A Ser. of Comprehensive Stud. in Math. 223 (1976). | MR | Zbl
and ,[3] A kinetic formulation formulti-branch entropy solutions of scalar conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 169-190. | EuDML | Numdam | MR | Zbl
and ,
[4] Régularité
[5] Averaging lemmas without time Fourier transform and applications to discretized kineticequations. Proc. Roy. Soc. Edinburgh Ser. A 129 (1999) 19-36. | MR | Zbl
and ,[6] Kinetic equations and asymptotic theory. Gauthiers-Villars, Ser. in Appl. Math. (2000). | MR | Zbl
, and ,[7] Magnetic microstructures, a paradigm of multiscale problems. Proc. of ICIAM (to appear). | Zbl
, , and ,[8] The averaging lemma. J. Amer. Math. Soc. 14 (2001) 279-296. | MR | Zbl
and ,[9] Global weak solutions of Vlasov-Maxwell systems. Comm. Pure Appl. Math. 42 (1989) 729-757. | Zbl
and ,
[10]
[11] Microlocal defect measures. Comm. Partial Differential Equations 16 (1991) 1761-1794. | MR | Zbl
,[12] Quelques résultats de moyennisation pour les équations aux dérivées partielles. Rend. Sem. Mat. Univ. Pol. Torino, Fascicolo Speciale 1988 Hyperbolic equations (1987) 101-123. | MR | Zbl
,[13] Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 26 (1988) 110-125. | MR | Zbl
, , and ,[14] Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d'un opérateur de transport. C. R. Acad. Sci. Paris Sér. I Math. 301 (1985) 341-344. | Zbl
, and ,[15] Kinetic decomposition of approximate solutions to conservation laws: Applications to relaxation and diffusion-dispersion approximations, Preprint. University of Wisconsin, Madison (2001). | MR | Zbl
and ,[16] Compactness in Ginzburg-Landau energy by kinetic averaging. Comm. Pure Appl. Math. 54 (2001) 1096-1109. | Zbl
and ,[17] Line-energy Ginzburg-Landau models: Zero-energy states. Ann. Sc. Norm. Sup. Pisa (to appear). | Numdam | Zbl
, and ,[18] Sur une classe d'espaces d'interpolation. Inst. Hautes Études Sci. Publ. Math. 19 (1964) 5-68. | Numdam | Zbl
and ,[19] Régularité optimale des moyennes en vitesse. C. R. Acad. Sci. Sér. I Math. 320 (1995) 911-915. | MR | Zbl
,[20] A kinetic formulation of multidimensional scalar conservation laws and related questions. J. Amer. Math. Soc. 7 (1994) 169-191. | MR | Zbl
, and ,
[21] Kinetic formulation of the isentropic gas dynamics and
[22] On Cauchy's problem for nonlinear equations in a class of discontinuous functions. Doklady Akad. Nauk SSSR (N.S.) 95 (1954) 451-454. | Zbl
,[23] Kinetic Formulations of conservation laws. Oxford University Press, Oxford Ser. in Math. and Its Appl. (2002). | MR | Zbl
,[24] A limiting case for velocity averaging. Ann. Sci. École Norm. Sup. (4) 31 (1998) 591-598. | Numdam | MR | Zbl
and ,[25] Compactness of velocity averages. Preprint. | Zbl
,[26] Compactness, kinetic formulation, and entropies for a problem related to micromagnetics. Preprint (2001). | MR | Zbl
and ,
[27] Time regularity for the system of isentropic gas dynamics with
[29] Regularizing effects for multidimensional scalar conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 413-472. | Numdam | MR | Zbl
,Cité par Sources :