@article{CM_1985__55_2_209_0, author = {Hayes, David R.}, title = {Stickelberger elements in function fields}, journal = {Compositio Mathematica}, pages = {209--239}, publisher = {Martinus Nijhoff Publishers}, volume = {55}, number = {2}, year = {1985}, mrnumber = {795715}, zbl = {0569.12008}, language = {en}, url = {http://www.numdam.org/item/CM_1985__55_2_209_0/} }
Hayes, David R. Stickelberger elements in function fields. Compositio Mathematica, Tome 55 (1985) no. 2, pp. 209-239. http://www.numdam.org/item/CM_1985__55_2_209_0/
[1] B-adic L-functions and Iwasawa's theory. A. Frölich (ed.), Algebraic Number Fields. London: Academic Press (1977) 269-353. | MR | Zbl
:[2] Elliptic Modules (Russian). Math. Sbornik 94 (1974) 594-627 = Math. USSR Sbornik 23 (1974) 561-592. | MR | Zbl
:[3] The class number of cyclotomic function fields: J. Number Theory 13 (1981) 363-375. | MR | Zbl
and :[4] Units and class groups in cyclotomic functions fields. J. Number Theory 14 (1982) 156-184. | MR | Zbl
and :[5] Distributions on Rational Function Fields. Math. Annalen 256 (1981) 549-60. | MR | Zbl
and :[6] The Γ-ideal and special zeta values, Duke Journal (1980) 345-364. | Zbl
:[7] On a new type of L-function for algebraic curves over finite fields. Pacific Journal 105 (1983) 143-181. | MR | Zbl
:[8] The annihilation of divisor classes in abelian extensions of the rational function field. Séminaire de Théorie des Nombres(Bordeaux 1980-81), exposé no. 3. | Zbl
:[9] Explicit class field theory for rational function fields. Trans. Amer. Math. Soc. 189 (1974) 77-91. | MR | Zbl
:[10] Explicit class field theory in global function fields. G.C. Rota (ed.), Studies in Algebra and Number Theory. New York: Academic Press (1979) 173-217. | MR | Zbl
:[11] Analytic class number formulas in global function fields, Inventiones Math. 65 (1981) 49-69. | MR | Zbl
:[12] Elliptic units in function fields, in Proc. of a Conference on Modern Developments Related to Fermat's Last Theorem, D. Goldfeld ed., Birkhauser, Boston (1982). | MR | Zbl
:[13] L-functions at s = 1. IV. First derivatives at s = 0. Advances in Math. 35 (1980) 197-235. | MR | Zbl
:[14] Les conjectures de Stark sur les functions L d'Artin en s = 0, Birkhauser, Boston (1984). | MR | Zbl
:[15] Brumer-Stark-Stickelberger, Séminaire de Théorie des Numbres, Université de Bordeaux (1980-81), exposé no. 24. | MR | Zbl
:[16] On Stark's conjectures on the behavior of L(s, χ) at s = 0. Jour. Fac. Science, Univ. of Tokyo, 28 (1982), 963-978. | Zbl
: