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§1. Introduction

The group of roots of unity JL(F) in a global field F is finite. Throughout
the paper, WF denotes the order of p(F); and MF denotes the set of
places of F. When F is a function field, DF denotes the group of divisors
of F (in additive notation); and for x ~ Fx, 03B4F(x) ~ DF denotes the
divisor of x. Except for an example presented briefly in §3 below, we will
work entirely over a fixed global function field k as a base. Let Fq be the
exact field of constants of k. If b is a divisor of some finite extension
field of k, then by "deg b " we always understand the degree of b over
Fq. For b = p, a prime divisor, Np = qdegp is the order of the residue class
field at w .

Let K/k be a finite abelian extension with Galois group GK. Assume
given a non-empty finite subset T of Mk which contains at least all those
places which ramify in K/k. For p ~ T, the Frobenius automorphism
o:p E GK is well-defined. Let K be the group of complex valued char-
acters of GK. For a given Ç G GK, we define the incomplete L-function of
-0/ relative to T as follows:

where s is a complex value with Re(s ) &#x3E; 1. The Riemann-Roch theorem

implies that LT(s, 03C8) is a rational function of q-s which takes a finite
value at s = 0 (cf. §6 below).

Let "03C8" also denote the linear extension of 03C8 to the complex group
algebra C GK ]. By character theory, there is a unique element OT, K E

* Partially supported by NSF grant MCS-82-01637.
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C[GK] such that

for all 03C8 E K. We call 03B8T,K the T-incomplete L-function evaluator at
s = 0. The reader should note that the definition of 03B8T,K is " twisted" by
the introduction of the complex conjugate character on the right in (1.2).

DEFINITION 1.1: The element 03C9T,K = WK03B8T,K of C[GK] is called the

Stickelberger element of K/k relative to T.

Deligne ([14], Chapter V) has proved a function field analogue of the
conjecture of Brumer-Stark (cf. [16]) for the element 03C9T,K. This analogue
asserts firstly (Brumer) that 03C9T,K belongs to the integral group ring
Z[GK] and annihilates the group CK of divisor classes of degree zero of
K. Given a divisor b of K of degree zero, suppose

where a E K. Let À be some Wrth root of a so that K(À)/K is a

Kummer extension. The analogue asserts secondly (Stark) that K(03BB)/k
is abelian.

Deligne actually proved a more precise result than the analogue of
Brumer-Stark. His theorem, which we now state, provides a function field
version of the abelian conjectures of Stark [13]

THEOREM 1.1 (Deligne): Let 13 be any prime divisor of K. We have

(1) 03C9T,K ~ Z[GK].
(2) If 1 T |  2, then there is an element 03B103B2,T E K such that

(3) If T = ( q}, then there is an element a03B2,T E K and an integer ne
such that

where (q)K is the simple sum of the places of K which divide q.
(4) Let 03BB03B2,T be a WK-th root of the element a03B2,T appearing in either (2)

or (3). Then K(03BB03B2,T)/k is abelian.

In the case WK = Wk (i.e., K/k geometric), Tate (cf. [8]) proved the
first assertion of the Brumer-Stark conjecture by using the action of GK
on the Jacobian of K. Deligne’s proof of the above stated theorem is
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based on the same idea, the Jacobian in the non-geometric case being
replaced by a motif.

Because 03B8T,K is defined as an L-function evaluator, one can say that
the elements 03B103B2,T of the theorem, or rather their divisors, are generated
by analytic processes in C which are controlled by the arithmetic of k. In
this paper we give a proof of Deligne’s theorem which is founded on the
analytic theory of the elliptic modules of Drinfeld [2]. Let oo be the place
of k which sits under 13, and let m be the conductor of K/k. Using the
functorial properties of lJJT,K one can reduce Theorem 1.1 to the case
when K is a ray class field split completely over oo (see §§2, 3). In this
case, we show (§§4- 6) that the element 03BB03B2,T is an m-di vision point of a
suitably normalized rank 1 elliptic module relative to 00 . The element

03B103B2,T is then the norm of 03BB03B2,T under the natural action of the group of
roots of unity of K. This enables us, e.g., to write 03B103B2,T as an infinite

product over the lattice r = 03BEm, where e is algebraic over the completion
koo of k at oo.

Perhaps the main interest in these results lies in the comparisons
which one can make with number fields. One obvious comparison is with
the classical Stickelberger element in cyclotomic fields (cf. [16]). A more
illuminating comparison, from the point of view of this paper, can be
made with the real subfield of a cyclotomic field. The L-function
evaluator at s = 0 does not have rational coefficients in this case, but
there is nevertheless a very real sense in which the analogues of (2)-(4) of
Theorem 1.1 are valid. This comparison is presented briefly in §3 in the
hope that it will provide insight for the reader.

The division points of rank 1 elliptic modules over a rational function
field k as a base and with oo a k-place of degree 1 were studied

extensively by Galovich and Rosen in their papers [3], [4] on circular
units in "cyclotomic function fields." Their work, which first developed
the connection between such division points and the values of incomplete
L-functions at s = 0, is a basic source of motivation for this paper. In [11]
and [12], the results of [9], [3] and [4] were generalized to an arbitrary
base field k but with oo still a k-place of degree 1. The restriction

deg oo = 1 is removed in §§4-6 below. A conjecture of Goss [6, (2.8)]
provided guidance and insight for the author in constructing these
successive generalizations.

The author would like to thank B. Mazur, M. Rosen, D. Goss, and S.
Galovich for their interest and encouragement. He is much indebted to J..
Tate for suggesting that the methods introduced in [11] could be adapted
to prove Theorem 1.1. He thanks H. Stark for several very helpful
conversations. The knowledgeable reader will see the influence of Stark
especially evident in the calculations of §6. Special thanks go to Harvard
University for generously providing facilities during the period when
much of the research for this paper was carried out.
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§2. Elementary reductions.

A place 13 of K splits completely over k if 03B2 has distinct conjugates
under the action of GK. Let Sp( K ) ç MK be the set of places which split
completely over k. Our proof of Theorem 1.1 involves 03B2-adic analytic
constructions for the 13 EE Sp( K ) "one place at a time." A major aim of
this § is to show that Theorem 1.1 follows in general if we prove parts (2),
(3) and (4) of the theorem for almost all (i.e., all but finitely many) of the
places 13 E Sp(K). The techniques required to prove this result are

well-established (cf. [15] and [16]). We include a full treatment here in
order to fix notation that will be used in §§4 and 5 and for the

convenience of the reader.

Let CDK = C ~ZDK, a C[GK]-module which contains DK in a natural
way. A divisor q of any subextension of K/k has a natural image in DK
and hence a natural image in C DK. We denote these images also by " q ".

For a given strictly positive integer W, let AK(W) be the- subgroup
consisting of those elements a E K’ such that K(03B11/W)/k is abelian.
This subgroup is well-defined because the abelianess of K(03BB)/k is

independent of the choice of a W th root À of a. For any divisor b of K,
let BS(K, T, W, b ) be the assertion: There is an element 03B103B4 ~ AK(W)
such that

where f03B4 E QX is chosen so that deg( b - f03B4 q) = 0. Equation 2.1 is under-
stood to exist in CDK.

DEFINITION 2.1: Let D*K,T be the subgroup of DK consisting of those
divisors b such that BS( K, T, Wx, b ) is true.

For |T|  2 (resp. T = {q}), the truth of BS(K, T, W, 03B2) for any
one of the infinitely many places 13 (resp, i3 1 q) in Sp( K ) implies that
W03B8T,K ~ Z[G]. Therefore, either of the following two theorems is equiv-
alent to Theorem 1.1:

THEOREM 2.2: For every 13 E Mx, BS(K, T, WK, 03B2) is true.

THEOREM 2.3: We have D*K,T = Dx .

We wish to show that Theorem 1.1 is actually a consequence of the
following seemingly weaker version of Theorem 2.2.

H(K/k): For almost all 03B2 ~ Sp(K), BS(K, T, WK, 03B2) is true.
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In the remainder of this section, we prove that H( K/k ) implies Theorem
2.3. It is necessary first to introduce some notation and make some

observations.

Suppose E/k is an abelian overextension of K/k with Galois group
GE. Let SE be a finite set of k-places containing at least all the places
which ramify in E/k ; and for each p~MkBSE, let 03C4p ~ GE be the
Frobenius automorphism associated to p.

DEFINITION 2.4: Let JE be the annihilator of p(E) in the group ring
Z[GE].

LEMMA 2.5: The ideal JE is the Z-module P generated in Z[GE] by the
elements 03C4p - Np for ,p E MKB SE.

PROOF: Since every element of JE is congruent mod P to an integer, it
suffices to prove that WE E P. In fact, WE is the GCD of the integers
1 - Np for the .p e MkBSE with 03C4p = 1 (cf. [1], §2.2). 0

The restriction map res: GE - GK takes T, onto a, for all w G Mk BSE.
Therefore, we have

COROLLARY 2.6: The restriction map res: Z[GE] ~ Z[GK] takes JE onto
JK.

Put H = Ker(res) = Gal( E/K ), and let [H] be the sum in Z[GE] of
the elements in H. Then for all x E E’, x[H] ~ KX is the norm of x. Let

NE/K : CDE ~ CDK be the norm map on divisors. Then we have

for all x E E’; and since NE/K is a GE-morphism,

for all q e Z[GE] and 03B4 ~ DE.
In particular, let us consider E/k = K(03BB)/k where 03BBW = 03B1 with

a ~ AK(W). We note first

Observation 1: ~ E JK(À) - 03BB~ E K.

PROOF: For ~ ~ Gal(K(03BB)/K) = H, we have 03BB~ = 03B603BB for some 03B6 ~
03BC(K(03BB)). Since ~~ = ~~ and since q annihilates 03BC(K(03BB)),

Thus, Àl1 E K. D



214

Following Stark ([13], Lemma 6), we use this observation to deduce the
remarkable

Observation 2: If BS(K, T, W, 03B4) is true for any strictly positive integer
W, then BS(K, T, Wx, b ) is true.

PROOF: Suppose (2.1) holds with 03B103B4 = 03BBW, 03B103B4 ~ AK(W). Appealing to
Corollary 2.6, we choose 11 E JK(À) so that WK = res(~), and we set

03B1* = 03BB~. Then a. E K by Observation 1, and so

which implies that 03B4K(03B1*) = (WK/W)03B4K(03B103B4). Thus, the equality in (2.1)
persists if we replace ab by a* and W by Wx. Further, from (2.4) we see
that

for some root of unity 03B6. The extension K(03B603BB)/k c K(03B6,03BB)/k is there-
fore abelian, and so a * ~ AK(WK). 1:1

The following corollary of Observation 2 will be useful in §3.

PROPOSITION 2.7: Suppose E/k is an abelian extension of K/k which is
unramified outside of T. Let 13 Er= Sp(E) sit over i3 E Sp(K). Then

BS(E, T, WE, 03B2E) ~ BS(K, T, WK, 03B2).

PROOF : First, we note that

because 03B8T,K is uniquely determined as the T-incomplete L-function
evaluator at s = 0.
Now assume that BS( E, T, WE, 13 E) is true, and let a * ~ AE(WE) be

chosen so that

Since 03B1* has a WE-th root in an abelian extension of k, the same is true
of 03B103C4* for every T E H. Therefore, the WE-th root of 03B1[H]* is also abelian
over k, and so 03B1[H]* ~ AK(WE).
We next apply the divisor norm NE/K to both sides of (2.6). After a

short calculation using equations (2.2), (2.3) and (2.5) and noting that
NE/K03B2E = 03B2 since 03B2E ~ Sp(E), we arrive at (2.1) with 03B4=03B2 and
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03B103B2 
= 03B1[H]*. Thus, BS( K, T, WE, 03B2) is valid, and therefore by Observa-

tion 2, so is BS(K, T, WK, 03B2).

As noted above, H(K/k) ~ 03C9T,K ~ Z[GK]. We are now in a position
to improve this result.

PROPOSITION 2.8: Hypothesis H(K/k) implies JK03B8T,K Z [ GK
PROOF: Assuming H( K/k ) for |T|  2 (resp. T={q}) choose i3 E
Sp(K) (resp. 03B2~Sp(K), 03B2  q), and let 03BBWK = 03B103B2 ~ AK(WK) satisfy
(2.1) with 03B4 = 03B2. For ~ ~ JK(03BB), 03BB~ is a WK-th root of 03B1~03B2 in K by
Observation 1. After multiplying (2.1) by ql WK, we see that 03B4K(03BB~)=
~03B8T,K03B2 (resp. 03B4K(03BB~)=~03B8T,K(03B2-f03B2q)), which implies (res ~)03B8T,K ~
Z[GK] since 03B2 ~ Sp( K ). We conclude by invoking Corollary 2.6. 0

Let PK be the group of principal divisors of K, and let PKb be the
subgroup consisting of the divisors of the elements in AK(WK).

LEMMA 2.9: Hypothesis H(K/k) implies WT,x’ Px ç p;b.
PROOF: For each .p E Mk B T, put q (ue - Np)03B8T,K. Then ~p ~ Z[GK]
by Proposition 2.8, and 

For p, .p’ E MKB T, we have obviously

Now for a given principal divisor 03B4K(03B3), 03B3 ~ Kx, let 03B1 = 03B303C9T,K and
choose À over K so that 03BBWK = 03B1. We have to show that K(03BB)/k is
abelian. To that end, imagine K and À to be embedded in some fixed
way in kac, the algebraic closure of k, and let T and T’ be k-morphisms
of K(X) into kac. Choose p (resp. p’) so that a, (resp. a,,) is T (resp. T’)
restricted to K. Then

by (2.7), and this implies

for some root of unity e, E 03BC(K). Thus V E K(03BB), and so K(03BB)/k is a
Galois extension. Further, since 03C3’p - Np’ annihilates 03BC(K), when we
apply T’ - Np’ to both sides of (2.9), we get

by (2.8). Thus, K(03BB)/k is abelian.
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COROLLARY 2.10 : Hypothesis H(K/k) implies PK C D1:,T.

PROOF: The corollary follows immediately after one notes that in case
T = { q ), f03B4 = 0 for any principal divisor b. 0

One knows that the canonical images of the places in Sp(K) outside
any finite subset generate the divisor class group Dx/PK. This fact and
Corollary 2.10 together suffice to establish our main result:

PROPOSITION 2.11: Hypothesis H(K/k) implies Theorem 2.3 and hence
also Theorem 1.1.

Let I c Sp( K ) have a finite complement. Using class field theory, one
can give a short proof that I generates DK/PK. Since a convenient
reference for this proof does not seem to exist, we sketch it here. Let
L/K be the maximal abelian unramified extension of K, an extension of
infinite degree since it contains all constant field extensions of K. By
class field theory, the sequence

where ~ is the Artin map, is an exact sequence of topological groups. Let
R be the subgroup of DK generated by I, and let F be the fixed field of
~(R). Since I is nonempty, DKIPKR = Gal(F/K) is finite. Now L/k is
Galois by construction, and therefore F/k is Galois also. Further, from
the definition of R, all the places in I split completely in F/K. We see
now that the places in Mk which split completely in either K/k or F/k
differ by at most a finite set. By the analytic theory (zeta-functions), this
forces F = K. Therefore, DK/PKR is the trivial group.

§3. Hypothesis H(K / k) reformulated

Given a place oo E Mk, let koo be the completion of k at oo, and let As
be the ring of functions in k which are holomorphic away from oo. One
knows [2], [10] that the elliptic A,,,,-modules of generic characteristic can
be constructed by analytic processes over k~. In this section, we reduce
H( K/k ) to a statement S~ which is natural to the context of rank 1
elliptic A.-modules; and we compare S~ to its analogue for the class
fields of Q which are completely split over the archimedean place. This
analogue helps to motivate the proof of S~ which we give in §§4-6.

Let I~ be the group of fractional ideals of A~, and let Moo ç I~ be
the monoid of integral ideals. The group I~ is naturally isomorphic to
the subgroup of Dk consisting of those divisors which are supported away
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from oo. From this isomorphism, one can compute the order of Pic(A~),
the ideal class group of A~. One finds that IPic(Aoo)1 = hd~, where h is
the class number of k and d~ = deg oo . Let e denote the unit ideal of

100.
A finite abelian extension field K of k is called a real class field at 00

if there is a k-embedding of K into k~ or, equivalently, if oo splits
completely in K/k. By class field theory, the real class fields at o0

correspond in the familiar way with the generalized ideal class groups of
A~. In particular, for every ideal m E M~, there is a largest real class
field Hm of conductor m. Let T(m) denote the support of the divisor
associated to m, so that T(m) is precisely the set of k-places which
ramify in Hm/k. We call He the Hilbert Class Field at oc because it is the
maximal unramified real class field. Because oo splits completely in
He/k, W = qd~ - 1 is the order of p.(Hm) for every rrt E M~.

Let H~ be the union of the fields Hm for rrt E M~, and let i~ : H~/k
~ k~/k be an embedding. Then i~ determines a unique extension of oc
to Hoo and therefore, by restriction, a unique place on each Hm above oo.
We use the symbol "oo" to denote all these places.

As a first reformulation of H(K/k) for all K, we state

H(k): For every place oo E Mk and every ideal m ~ e in M~,
BS( Hm, T(m), W~, oc) is true.

PROPOSITION 3.1: Hypothesis H(k) implies H(K/k) for every finite
abelian extension K/k.

PROOF: Given K and T, let 2 be the finite subset of MK consisting of
those places which restrict to a place of T. Given 13 F= Sp(K)B03A3, let oc
be the k-place sitting under 13, and choose an embedding K/k - H~/k
so that 13 = oo. Next choose a multiple m e M~ of the conductor of K/k
so that T(m) = T. Then K ç Hm and by Proposition 2.7, BS( Hm, T(m),
W~, ~) ~ BS(K, T, WK, 03B2). 1:1

For the remainder of the paper, oo is a fixed place of k ; and H~/k is
imagined to be embedded in some fixed fashion as a subextension of
k~/k. Our aim is to prove the truth of BS( Hm, T(m), W~, ~) for all
m ~ M~, m ~ e.

Let G. be the Galois group of Hm/k. By class field theory, Ge is

isomorphic to Pic(A~); and in general, there is an exact sequence

where res is the restriction map. Therefore, if 03A6(m) is the order of
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(Aoo/m)X, then

A place of H. is infinite if it is a Gm-conjugate of 00; and a divisor
b e Dm, the divisor group of H., is finite if Supp( b ) contains no infinite
places. For x e Hxm, we define an element lm(x) (cf. [4]) of the group ring
Z[Gm] by

and we put

so that l*m(x) is that part of the divisor of x which is supported by the
infinite places of Hm. We callim and 1) logarithmic maps because each is
a Gm-morphism from the multiplicative Galois module H.’ into an

additive Galois module.
For brevity, we put Lm(s, 03C8) = LT(m)(s, 03C8), the incomplete L-func-

tion associated to the character 03C8 ~ m, and we write

DEFINITION 3.2: An element 03B1 ~ Hxm, m ~ e, is called an Lm-function
evaluator at s = 0 if lm(03B1) = W008m.

By Fourier inversion, a E Hm is an Lm-function evaluator at s = 0 if
and only if

for all characters 03C8 ~ Gm .
Let Bm be the integral closure of A~ in Hm , and let 03B4*m be the natural

Galois isomorphism from the group Im of fractional ideals of Bm onto the
subgroup of finite divisors of Dm . For a place q ~ oc of k, let (q)m
denote the product in I. of the prime ideals of Bm which sit over q
viewed as an ideal of Aoo. Since Hm/k is Galois,

where eq is the ramification index of q in Hm/k. For brevity, we write
Am(W~) = AHm(W~) and S. = Su..
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We can now state

S~: For m E M~, m ~ e, there is an element a E Bm ~ Am(W~) which
is an L.-function evaluator at s = 0. If T(m) = {q }, then a generates
the ideal (q)rm, where r = W~/Wk. Otherwise, a E Bxm.

The following lemmas will be used in proving that S~ is equivalent to
the truth of BS(Hm, T(m), W~, oo) for all m EMoo, m ~ e.

LEMMA 3.3. When T(m)={q},

PROOF: By class field theory, when T(m) = {q} the places over q in Hm
are totally ramified in Hm/He. Therefore [Hm : k] = hd~eq, and so (3.5)
follows from (3.4). 0

LEMMA 3.4: Let E m : Z[Gm] ~ Z be the augmentation map. Then

PROOF : Let

where Zk(s) is the zeta-function of k. From the definitions,

where res is the restriction down to k. Since

where Pk(u) is a polynomial with Pk(1) = h, (3.6) follows by a straight-
forward calculation. 0

We can now prove the main result of this §.

PROPOSITION 3.5: Statement S~ is equivalent to the truth of
BS(Hm, T( m ), woo, oo ) for all m ~ M~, m ~ e.

PROOF: Choose rn E M~, m ~ e. We consider first the case |T(m)|  2.
In this case, an element aoo E Hm satisfies (2.1) with K = Hm’ T = T(m),
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W = W~ and b = oo if and only if 03B1~ is an Lm-function evaluator at
s = 0 such that

Such an element certainly belongs to Bm .
We consider next the case when m is a power of the prime ideal q. In

this case, an element 03B1~ E Hm satisfies (2.1) with K = Hm, T = T(m),
W = W~ and b = oo if and only if 03B1~ is an L.-function evaluator at
s = 0 with

where r is determined by

the last equality following from Lemma 3.4. Invoking Lemma 3.3 to

compute deg( q ) m on the left above, we obtain r = W~/Wk. 0

The proof of S~ which we give in the following §§ is motivated in part
by the well-known formulas evaluating Dirichlet L-functions at s = 0 (cf.
[3] and [4]). Given an integer m &#x3E; 1, m W 2 (mod 4), let 4, be an even
Dirichlet character modulo m, and let

be the L-function associated to 03C8. Since 03C8 is even, L*m(0, 03C8) = 0; but one
knows (cf. [13]) that

where ~t = (1 - e2’1Tit/m)(1 - e-2’1Tit/m). 
Let oo denote the archimedean place of Q ; and for x E IR x = Qx~, let

03BD~(x) = -log|x|. Using the "explicit class field theory" of Q, we can
interpret (3.9) as a statement about Hm/Q, the maximal abelian exten-
sion with conductor m. In fact, Hm is the real subfield of the cyclotomic
extension Q(03B6)/Q, where 03B6 is a primitive m-th root of unity. Embedding
Q(03B6) in C so that 03B6 = e 2,i/m and viewing 03C8 as a character of the Galois
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group Gm ~ (Z/mZ)x/{± 1} of Hm/Q, we can rewrite (3.9) as

where 03B1*=(1-03B6)(1-03B6-1) and where W~ = WHm = WQ = 2. Now
L*m(s, 03C8) is the incomplete Artin L-function of 03C8 except that it is

missing a conj ectural " Euler factor" E~(s) at 00. Since oo splits com-
pletely in Hm/Q, E~(s) should be independent of 03C8. We further assume
that E~(s) has a simple pole of residue 1 at s = 0. If we now define

then Lm(s, 03C8) is our incomplete L-function; and we can write

Since 03B1* is the image of 1-03B6 under the norm map from Q(03B6) to Hm,
a* E Hm and therefore deserves to be called "an L.-function evaluator
at s = 0".

Let Bm be the ring of integers of Hm . It is a standard fact that lr*Bm is
the unique prime ideal of Bm over q if m = q e is a prime power and that
03B1* ~ Bxm otherwise. Since W,,,,IWu = 1, this behavior of 03B1* reflects that
asserted for the L.-function evaluator a in S~. If we note further that
03B1* = 03B6-1(1 - 03B6)2, then it is immediate that Hm(a*) is cyclotomic and
hence abelian over O. Thus the familiar, but special, situation over the
base pair (0, oo) provides an exact analogue for S~.

Adopting now the philosophy of Hilbert’s Twelfth Problem, we may
say that a * has been constructed by analytic processes controlled by the
arithmetic ouf 0. Indeed, noting that a * &#x3E; 0, we may solve the equations
(3.11) for log 03B1* in terms of the values of Lm-functions at s = 0 and then
exponentiate. However, there is a simpler way of computing a * analyti-
cally. Let

where the infinite product converges conditionally under the natural
ordering on the index n. Then since 03B1* = -03BB2*, (3.12) provides an
analytic construction of a * as a single value of the function 4 sin2(x). It
is remarkable that the square of the element defined by 2wi/m times a
simple product over the ideal mZ is an Lm-function evaluator at s = 0
belonging to Bm
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If the statement S~ is true for function fields, then we can construct

03B4m(03B1) but not a itself from the values of the incomplete L-functions at
s = 0. We will show, however, that the W~-th power of an element À
defined over koo by an infinite product similar to that in (3.12) is an

Lm-function evaluator at s = 0 meeting the requirements of S~.

§4. Normalized elliptic A 00 -modules.

In this §, we show that the normalization theory introduced in [11], §2 for
the case d~ = 1 can be extended to the general case. The field of
constants K(~) in the completion k 00 is isomorphic to the residue class
field at oo and therefore has degree d~ over Fq. Let Uoo (resp. U(1)~) be
the group of units (resp. 1-units) at oo ; and let 12 be the completion of
the algebraic closure of k 00.
We recall (see [2] or [10]) that an elliptic A~-module over 2 is an

Fq-algebra morphism 03C1: A~ ~ 03A9[03C8], where 03A9[03C8] ] is the twisted poly-
nomial ring relative to the automorphism w ~ wq of 03A9. Thus, the
elements p,, x E Aoo, are left polynomials in 03C8, where 03C8 satisfies 03C8w =

wq03C8 for all w E 03A9. The A.-module p is said to have rank 1 if deg px =

deg x for all x ~ A~/{0}. Let D:03A9[03C8] ~ 03A9 be the differential which
maps each polynomial to its constant term. Throughout the rest of the
paper, we understanding the phrase "p is an A.-module of generic
characteristic" to mean that p is a rank 1 elliptic A.-module over S2 such
that the map x H D( px) for x E Aoo is the inclusion A~ ~ 0. We say that
such a p is normalized if the leading coefficient sp(x) of px belongs to
tc(oo) for all x ~ A~B{0}. By [10] Lemma 10.3, each 0-isomorphism
class of A,,.-modules of generic characteristic contains a normalized
module.

DEFINITION 4.1: A sign function sgn : kx~ ~ K(~)x is a co-section of the
inclusion morphism K(~)x ~ kx~ such that sgn(U(1)~) = 1. In addition, we
put sgn(0) = 0. Let a be an Fq-automorphism of K(oo). The composite
map a o sgn is called a twisted sign function or a twisting of sgn by a.

LEMMA 4.2: Let sgn and sgn’ be sign functions on k~. Then there is an
element a E K(~)x such that

for ail x E koo.

PROOF: From the definitions, the quotient sgn(x)/sgn’(x) is trivial on
Uoo and therefore factors through 03BD~ : kx~ ~ Z. Now, deg x = - d~
.voo(x). ~
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COROLLARY 4.3: There are exactly Woo sign functions on k~.

Let p be a normalized elliptic A ~-module of generic characteristic. We
show now that the map x H s03C1(x) is the restriction to A~ of a unique
twisted sign function on k~. Note first that since deg px = deg x = a
multiple of d~, s03C1(x) is a multiplicative map on A~B{0} into k(~)
satisfying s03C1(03B1) = 03B1 for a E 0:;. Therefore, s03C1 has a unique extension to
kX, and

LEMMA 4.4: We have s03C1(U(1)~ ~ kx) = 1.

PROOF: Let z = x/y ~ U(1)~ with x, y ~ A~. Then deg x = deg y but
deg(x - y)  deg y because 03BD~(z - 1) = 03BD~((x - y)/y) &#x3E; 0. Thus, 03C1x - y
= px - py has degree strictly less than deg py, and this implies s03C1(x) =
s03C1(y) and hence s03C1(z) = 1. 0

We see by this lemma that sp is continuous on kx in the v,,,,-topology and
therefore has a unique continuous extension to kx~, also denoted by "s03C1",
which is trivial on U(1)~. We can now prove

PROPOSITION 4.5: The extended map sP on kx~ is a twisted sign function.

PROOF: We need only show that s03C1 restricts of an F -automorphism of
k(~). For this, it suffices to prove that s03C1(1 - a ) = 1 - s03C1(03B1) for all
03B1 ~ k(~). If a = 1, this is clear; and so we assume 03B1 ~ 1. By continuity,
we can choose z = x/y E U~ B U(1)~ with x, y E Aoo so that s03C1(z) = s03C1(a)
and s03C1(1 - z ) = s03C1(1 - a ). Then since z ~ U(1)~, deg( x - y ) = deg x =

deg y which implies s03C1(x - y) = s03C1(x) - s03C1(y). Thus, s03C1(1 - z) = s03C1
((y - x)/y) = 1 - s03C1(z). 0

We now choose arbitrarily one of the W~ sign functions sgn on koo
and incorporate it as part of our base object, which becomes a triple
( k, oo, sgn). An element z ~ kx~ is called positive if sgn(z) = 1 and
totally positive if sgn(z’) = 1 for every k-isomorphism a of k~. The
conditions imposed on the element a by S~ uniquely determine the
divisor 03B4m(03B1). The choice of sign function enables us to specify the
element itself by imposing the additional requirement that a be totally
positive. As we show in subsequent §§, there is a (necessarily) unique
totally positive element a E Hm satisfying the conditions of Soo.

The notion of monic elements in function fields has been used by
several authors (cf., e.g., Artin’s thesis). In the older literature, such
elements were called primary. The usual way of introducing monic
elements is to choose a uniformizer at oo. This idea has been exploited by
Goss [7] in defining characteristic p zeta- and L-functions. Such a

procedure leads to a sign function as defined above, and the monic
elements are then the elements we have called positive.
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We say that a given A~-module p is sgn-normalized if p is normalized
with sp equal to a twisting of sgn.

PROPOSITION 4.6: Every elliptic A.-module of generic characteristic is

S2-isomorphic to a sgn-normalized module p.

PROOF: By [10], Lemma 10.3, there is a normalized p’ in the 9-isomor--
phism class of the given A~-module; and by Proposition 4.5 above, Sp’ is
a twisting by a of some sign function sgn’ on k~. Choose a E K(~) so
that (4.1) holds, choose w ~ 03A9 so that wW~ = 03B103C3 and put p = w-103C1’w.
Then for all x E A~ B {0},

since a E K(oo). Thus, sp is a twisting of sgn by o. 0

Now let p be a sgn-normalized A.-module of generic characteristic,
and let I*(03C1) be the subfield of 2 generated by the coefficients of the
polynomials px, x ~ A~B{0}. By [10], §8, I*(03C1) contains the Hilbert
Class Field H,; and further, there is an element w E DX such that

p’ = w03C1w-1 is defined over He . Since K(~) ~ He and since the leading
coefficient of px belongs to He, we see that

for all x ~ A~ B {0}. In fact, because d~ is the GCD of the integers
deg x for x ~ A~B{0}, (4.2) implies that

Thus, I*( p ) ç He (w) is a Kummer extension of He, which implies in
particular that I*(03C1)/k is finite and separable.

For a finite place 13 of He, let Norm(03B2) be its norm down to k
viewed as an ideal in M~. By the properties of He , Norm(03B2) is a

principal ideal.

PROPOSITION 4.7: Let 13 be a finite place of He which does not ramify in
He(w)/He, and let T03B2 be the Frobenius automorphism of He(w) associated
to 13. Let x03B2 be one of the generators of Norm(03B2). Then we have :
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PROOF: Let 03B2* be a place of He(w) sitting over 13. We know from [10],
Lemma 9.4, that the leading coefficient s03C1’(x03B2) belongs to Fxq modulo 03B2,
which means that

as N03B2 = qdegx03B2 by definition of x,,. Now w1-03C4p E K(~) by (4.3), and so
the congruence

implies (I). For (II), we note from p = w03C1’w-1 that w03C403B2-1 is an isomor-

phism from p to 03C403B203C1. Since Fxq c Aut(p), (I) ~ (II). 0

COROLLARY 4.8 : Let wo = wq-1. Then
(1) w003C403B2 = S03C1(X03B2)q-1w0.
(2) I*(03C1)=He(w0), and [I*(03C1):He]=r=W~/Wk.
(3) A finite place p of k which is unramified in I*(03C1)/k splits completely

in I*(03C1)/k if and only if .p = xA~ with sgn(x) E IF;.
PROOF: Assertion (1) follows from (I) above, and (1) implies that

[He(w0) : He ] = r since sp is surjective by Proposition 4.5. Now I*(03C1) ç
He ( wo ) from the definitions, and (II) implies that p has r distinct Galois
conjugates over He since in fact ([10], Corollary 3.9) Aut(03C1) = Fxq. Thus,
I*(03C1) = He(w0). For (3), let p = xA~ split completely in He/k, and let
13 e MH e sit over p. Then we can take x03B2 = x since Norm(03B2) = p, and
so (3) follows from (1). 0

Part (3) of this last corollary allows us to identify I*(03C1) by class field
theory. Let Jk be the idèle group of k, and let U* 9 Jk be the subgroup
consisting of those idèles i such that 1, is a unit of each finite place p of
k and such that sgn(i~) = 1. Let 03C0~ be a positive uniformizer at 00.

Then, as we easily compute, the subgroup

has index rhdoo in Jk and therefore corresponds to an abelian extension
E/k of degree rhdoo. From the definition of Ji, E/k is unramified

except at oo and the ramification index at oo is r. We conclude further
that the places .p ~ Mk which split completely in E/k are exactly those
mentioned in (3) of the corollary. Therefore, the Galois closure of I*(03C1)
over k equals E, and so in fact I*(03C1) = E since [E : k] = [I*(03C1): k]. In
particular, we see that I*(03C1)/03BA is abelian. We see also that I*(03C1) is

independent of the choice of p.

DEFINITION 4.9: Let H*e be the common field I*(03C1) for the sgn-nor-
malized A,,,,-modules p of generic characteristic. We call H*e the normal-
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izing field with respect to sgn (or, for short, the normalizing field). Let
Gé = Jk/J*e be the Galois group of H*e/k.

Since every finite k-place is unramified in H*e/k, the Artin automor-
phism Ta E Gi is defined for every ideal a E Moo. We can identify the
A.-module TQp in terms of the operation * introduced in [10] §3. Let p,,
be the isogeny which satisfies 03C1a · px = ( a * 03C1)~ · Pa for all x E A~. Then
deg p. = deg a and so

for x E Aoo. In particular, we see that a * p is also sgn-normalized. Now
for a prime ideal p E M~, the He-forms of r,,p and p * p are S2-isomor-
phic by [10], Theorem 8.5, which implies that 03C4p03C1 

= a-1(p * p ) a for some
a E 2’; and we note from (4.5) that a E k(~). Now let 03B2 be a place of
Hi which divides p. Since T, p and p * p have equal reductions modulo
03B2([10], Corollary 3.8), a is an automorphism of this reduction and
therefore belongs to IF;. We have now shown that 03C4p03C1 = p * p. In order to
show TQ p = a * p in general, we proceed by induction on the number of
prime ideals dividing a. Assuming 03C4a03C1 = a * p for a given a, we have for
any prime ideal p

since * commutes with Galois action.
We have now proved

THEOREM 4.10: The normalizing field Hé is abelian of degree rhdoo over k.
The extension H*e/k is unramified except at oc, and H*e/He is totally
ramified at oc. For a given sgn-normalized A,,,,-module p of generic
characteristic, we have 03C403B103C1 = a * p for every ideal a E Moo.

COROLLARY 4.11: For x EAoo, let Tx be the automorphism assigned to the
principal ideal xA~ by the Artin map. Then

PROOF: For a = xA~, a * p equals the right hand side of (4.6) by [10],
Lemma 3.5. 0

In the remainder of this §, p is a fixed sgn-normalized A,,,,-module of
generic characteristic. Let Aoo act on 2 through p, and let flp denote the
ordinary A~-module associated to this action. Consider now the fields
Km = H*e(m) obtained by adjoining to Hé the submodule m c flp of
m-torsion points, m ~ M~, m ~ e. We recall ([10], §2) that m = A~/m,
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which implies that the group of A~-automorphisms of m is isomorphic
to (A~/m)x in a natural way.

The extension Km/Hé is Galois because m is precisely the set of
roots of the linear polynomial 03C1m(t) ~ H*e[t]. Since A~ acts on 03A903C1 via

polynomials with coefficients in Hé , the A~-action on m commutes
with the Galois action over H*e. Therefore, restriction to m provides a
natural monomorphism

which shows that Km/Hi is abelian. By examining the ramification at
the places of Hé which sit over the primes dividing m as in [10], §9, we
may show that [ Km : Hm ] = 03A6(m) so that g. is actually an isomorphism.

Let 13 be a place of Hé which does not ramify in Km/Hi, let a be its
norm down to k, and let a, OE Gal(Km/Hi) be the Frobenius auto-
morphis associated to 13. Since Ta acts as the identity on Hé (and He ),
we deduce from Corollary 4.11 that a = xA~ is a principal ideal with

sgn(x) E 0=;. Choose xe to be the unique generator of a such that

sgn(x03B2) = 1. Then arguing as in the proof of [10], Theorem 9.5, we can
show that

where can: A~ ~ A~/m is the canonical morphism.
We are now ready to prove that the extension Km/k is abelian and to

identify it in the catalogue provided by class field theory. For each finite
p E Mk, let p e be the highest power of p dividing m; and let U(m) ç Jk
consist of those idèles i such that 1, is a p-unit satisfy 1, ~ 1 (mod pe)
for each finite p. Let U*(m) ç U(m) consist of the idèles i satisfying the
additional condition sgn(i~) = 1. Let 03C0~ be a positive uniformer at oo.
Then the subgroup

has index rhd~03A6(m) in Jk and therefore corresponds to an abelian
extension E*lk of degree rhd~03A6(m). From the definition (4.8) of J*m,
the ramification number in E*lk of each finite place p is 03A6(pe), and
the ramification number at oo is Woo. We conclude also that p E Mk
splits completely in E*lk if and only if the Aoo-ideal determined by p is
generated by a positive element x E Aoo satisfying x ~ 1 (mod m). By
(4.7), this set of places differs by at most a finite number of places from
the set of places which split completely in Km/k. Therefore E*m is the
Galois closure of Km over k, and so in fact Km = Em as [Km:k]=
[E.*: k]. This proves that Km/k is abelian and also that Km is indepen-
dent of the choice of the sgn-normalized elliptic module p.

Let Gm be the Galois group of Km/k. From our observations above,
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the Artin automorphism QQ E G*m is defined for every ideal a E Mou
which is prime to m. Let 03C1’ = 03C403B103C1 = a * 03C1, and let ’m be the set of
m-torsion points of p’. Then for fixed 03BB ~ m, we have

for every x ~ A~. If x ~ m, (4.9) shows that 03C1’x(03BB03C303B1) = 0, which implies
that QQ maps m into ’m. Letting Aoo act on ’m through p’, we see
further from (4.9) that QQ is an A~-module isomorphism of m onto ’m.
Now from the defining equation 03C1a03C1x = 03C1’x03C1a, we see that the map

03BB ~ 03C1a(03BB) is also an A,,,,-module morphism from m into ’m. In fact
since a is prime to m, this map is an isomorphism because the roots of
Pa(t) are precisely the a-torsion points for A~ acting on 9 through p.

THEOREM 4.12: For every 03BB ~ A m ,

PROOF: Consider first the case a = p, where p is a prime ideal not
dividing m. Let 13 be a place of Km lying over p. Then since the

polynomial 03C1p(t)/t is Eisenstein at any place of Hé laying over p ([10],
Proposition 7.6) and has degree N., we have

Now the elements of ’m are distinct modulo 13 (cf. [10], Lemma 9.3),
and so this congruence implies the equality (4.10) for a = p. To prove
(4.10) in general, we proceed by induction as in the remarks preceding
Theorem 4.10 above. 0

Let Cm be the integral closure of A~ in Km. Since p is normalized, the
coefficients of each px, x E A~, are integers away from oo ([10], Corollary
7.4). Therefore the torsion points of A~ acting on 2 through p are also
integers away from oo, and so in particular m c Cm .

COROLLARY 4.13: Let À E m, À =1= 0. Then for all (J E G*m, 03BB03C3-1 ~ Cxm.

PROOF: Let Q = 03C3a, a E Moo, a prime to m. Since t divides 03C1a(t), (4.10)
shows that at least 03BB03C3-1 E Cm . This being true for all a E Gm and any
À’ =1= 0, À’ E A’ , we see that

also belongs to Cm . Il

For x E kX, x prime to m, let ax E Gm denote the automorphism
assign to the fractional ideal xA~ by the Artin map. Then we have
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COROLLARY 4.14: If x ~ kx, x ~ 1 (mod m), then

for all 03BB ~ m.

PROOF: Assume first that x E Aoo so that a = xA~ is an integral ideal.
Since s03C1(x) is the leading coefficient of PX, we have 03C103B1 = s03C1(x)-103C1x so
that by (4.10)

But since x = 1 (mod m), 03C1x(03BB) = À and so (4.11) is valid.
In general, let x = y/z with y, z ~ A~ chosen so that y ~ z ~ 1

(mod m). Then since Qx is trivial on H, p K(~), we have

by two applications of (4.11). ~

Let Vm c kX consist of those elements x such that x ~ 1 (mod m), and
let G*~ ç Gm be the image of Tlm under the Artin map. By the Weak
Approximation Theorem, sgn takes every possible non-zero value on Tlm,
and so (4.11) implies that G*~ is isomorphic to k(~)x. Thus G*~ is cyclic
of order Woo.

PROPOSITION 4.15: The subgroup G*~ is both the decomposition group and
the inertial group at 00. If Km,~ is the completion of Km at some place
lying over oo, then Km,~/k~ is a totally ramified Kummer extension of
degree W~, and Km,oo = k~(03BB), where 03BB is any non-zero element of m.
If ~(~): kx~ ~ G*~ is the norm residue symbol at oc, then

for all x ~ kx~.

PROOF: Let q5: Jk ~ Gm be the global reciprocity law. For x E Vm, let x*
be the idèle which differs from x only in that x*~ = 1. By the properties
of ~, we have ~x* = 03C3x and hence ~(~)x = lux 1. Thus (4.12) holds for
x E Ym by the global equation (4.11). Now Vm is dense in kx~ by weak
approximation and so (4.12) is indeed valid for all x E kx~. It is now clear
that G*~ is a quotient of the decomposition group at oo and that

k~(03BB)/k~ is Kummer of degree W~. Turning now to the group J*m
associated to Km/k, we observe because 03C0~ ~ Jm that the decomposition
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and inertial groups at cc are indeed equal; and we have already observed
that the ramification number at oo is W~. Thus Km,~ = k~(03BB). 0

Let Em be the fixed field of G*~. Then oo splits completely in Em/k,
and so Em is a real class field at oo. We will soon identify Em as the ray
class field Hm, but first we note

COROLLARY 4.16: Let Nm : Km ~ Em be the norm map. Then the subgroup
N-m(Kxm) of Em consists of totally positive elements.

PROOF: By definition of Em, Nm is the restriction to Km of the local
norm map at oo. Therefore, ~(~) is trivial on N-m(Kxm) which together
with (4.12) shows that this subgroup consists of positive elements in at
least one k-embedding of Em into koo. Since this subgroup is invariant
under Galois action over k, we are done. Il

Let ~: Jk - Gm be the reciprocity law morphism. In order -to identify
the abelian extension Em/k, we will compute its idèle group ~-1(G*~).
Every element u E U(m) can be written u = u*u~ where u~ is the idèle
whose component at oo equals that of u and whose component at any
finite place equals 1. Since u* ~ U*(m), ~(u) = ~(u~) = ~(~)u~ ~ G*~.
Thus, U(m) ~ ~-1(G*~) and so the subgroup 

is also contained in ~-1 (G*~). But now, as we easily compute, kX . U*( m)
has index W~ in kx · U(m), and so Jm = ~-1(G*~).

THEOREM 4.17: The fixed field of G*~ is the ray class field Hm . If À is a

generator of m as an A.-module, then

is a totally positive element of Hm. If T(m) = {q}, then a generates the
ideal (q)rm in Bm where r = W~/Wk; otherwise a E B,,,.

PROOF: The computation Jm = ~-1(G*~) above allows us to identify Em
as Hm’ and then Corollary 4.16 shows a to be totally positive.

For the last assertion, let us first consider the case T(m) = {q}. Put
a = m/q, and let fm(t) be the quotient polynomial 03C1m(t)/03C1q(t). Then
fm ( t ) E Ce[t], where Ce is the integral closure of A~ in H*e; and the roots
of fm(t) are precisely the generators of the A~-module m.

LEMMA 4.18: Let [q]e be the product in Ce of the prime ideals dividing q.
Then
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PROOF: By [10], Proposition 7.6, fm ( t ) is Eisenstein at every prime factor
of [q]g. Therefore, we need only show that fm (0) is a unit at all the other
prime ideals of Ce. To that end, choose e &#x3E; 0 so that me = xA~ is

principal, and put b = me-le Then

by [10], Theorem 3.10, which shows that D(03C1m) divides x in Ce . Thus,
fm (0) also divides x in Ce, and we are done. 0

LEMMA 4.19: Let [q]m be the product in Cm of the prime ideals dividing q.
Then

PROOF: By Corollary 4.13, the product of the roots of fm(t) equals
u03BB03A6(m), where u E Cxm. Thus, (4.14) shows that

Now because Km/Hé is totally ramified at each prime factor of [q]e,

which together with (4.16) proves our result. D

Since q has ramification number 03A6(m)/(q-1) in Hm/k and ramifi-
cation number 03A6(m) in Km/k, each prime factor of ( q ) m has ramifica-
tion number Wk = q -1 in Km/Hm . Thus,

which implies (q)rm = aBm, as required.
Finally, we consider the case |T(m)|  2. Let p and q divide m,

p ~ q, and put a = m/p and b = m/q. Then 03C1a(03BB) and 03C1b(03BB) are each
respectively generators of A, and Aq, and so by Lemma 4.19 they
generate [p]p and [q]q in the subfields Kp and Ka of Km . Since these
ideals generate relatively prime ideals in Cm, there are elements a and b
in Cm such that a03C1a(03BB) + b03C1b(03BB) = 1. Since À divides both 03C1a(03BB) and
03C1b(03BB), we see that 03BB ~ Cxm; and this certainly implies 03B1 ~ Bxm. This

completes the proof of Theorem 4.17. D

§5. The Invariants 03BE(0393).

A 1-lattice is a rank 1 A,,.-submodule of R. If r is a 1-lattice, then the
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infinite product

converges for all z E 03A9 in the voo-topology, and the function e r ( z ) which
it defines is an IF q-linear endomorphism of 03A9 with period lattice r. One
knows further ([2] or §4 of [10]) that A~ acts on e0393(z) by "complex
multiplications" through an elliptic A~-module pr of generic characteris-
tic. This means that

for all x E A~ and all z E D. Further ([10], §5), every elliptic A.-module
of generic characteristic is pr for a uniquely determined 1 lattice r.
We say that 1-lattices r and r’ are isomorphic if r’ = wr for some

element w E DX. Let us call r a special 1-lattice (relative to the choice of
sgn) if pF is sgn-normalized. Because 03BE03C1039303BE-1 = 03C103BE0393 for all 1 OE 03A9x, every
1-lattice r is isomorphic to a special 1-lattice; and further (cf. Proposi-
tion 4.7), the group of constants K( oo)X acts transitively on the special
1-lattices belonging to the isomorphism class of r. Therefore, if we

define the invariant of r to be an element 03BE(0393) E 2’ such that 03BE(0393). r
is special, then 03BE(0393) will be determined up to multiplication by an
element of tc(oo)B For convenience, we will often ignore the fact that
these invariants are not quite uniquely defined when writing equations
which involve them.

THEOREM 5.1: Let e(I) be the invariant of the 1-lattice r, and put
p = 03C103BE(0393)0393. Then for any ideal a E M~ and all z E D,

PROOF: Put 0393* = 03BE(0393)·0393, a special 1-lattice. By [10], Proposition 5.10,
ri = D(03C103B1)03B1-10393* is the 1-lattice associated to p’ = a * p, itself a sgn-
normalized module. Therefore, 03BE(a-10393) = D(03C1a)03BE(0393). Now by [10],
Equation 5.11,

for all u E 0’. Taking u = 03BE(0393)z in this last equation, we arrive easily at
(5.3). 0

Fix now for the moment a special 1-lattice r, and put p = pr. For
rrt E M, m ~ e, let m be the module of m-torsion points for A~ acting
on 9 through p. Whereas in §3 we considered the elements of m as
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algebraic objects, we now observe from (5.2) that

which provides an analytic construction of these elements in the complete
field 0. We see in particular that if we take 0393 = 03BE(m)·m, a special
1-lattice isomorphic to m itself, then

generates m as an A~-module. Thus, the analytic processes imposed by
03BD~ allow us to specify a particular element of the field Km. This element
is not quite unique since 03BE(m) is not unique, but the norm a = N.- (À) =
-Àwoo E Hm is unique (after the choice of sgn). We will show in §6 that
this analytically specified element a is an Lm-function evalutor at s = 0,
thus completing the proof of Theorem 1.1.

For use in §6, we will need the formula for 03BE(c), c E 100’ provided by
the next lemma. We adopt the convention that limits over x mean limits
as x runs through a sequence of positive elements of A~ such that
N( x ) = q deg x becomes infinitely large. The notation a E c mod x means
that a runs through a complete set of representatives for c modulo the

subgroup x c .

LEMMA 5.2: Let c E 100. Then

PROOF: Since p = 03C103BE(c)c is sgn-normalized, the elements 03BE(c)ec(a/x) for
a E c mod x are the xA~ torsion points for A~ acting on D through p
and therefore are precisely the roots of the polynomial 03C1x(t) = tN(x)
+ ... + xt. Thus

which implies (5.6). D

§6. Partial zeta-functions.

In this §, we put d = d~ and A = Aoo. For a E I~, we write N( a ) = qdeg a
so that, in particular, N( xA ) = N( x ) = q-d03BD~(x) &#x3E; for x E kx. For integral
a, N(a) = |A/a|. For any divisor b of k, L(03B4) denotes the set of
elements y E k such that 03BDp(y03B4)  0 for all p E Mk.

For given a E I~, let D( a ) be the least integer greater than or equal
to (deg a)/d, and let R(a) = d - D(a) - deg a  0. Since deg a  d - D(a)
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for all a ~ a, we have

where

for v  0. We call F03BD(a) the v-th layer of a. By the Riemann-Roch
Theorem, for 03B4 large

has order

where g is the genus of k.

PROPOSITION 6.1: Let a E 100 and t E kB a be given. The infinite series

and

converge absolutely for Re(s) &#x3E; 1. The functions Za(s, t) and Va(s) are
rational functions of q-ds with no singularity other than a first order pole at
s = 1. Further, Za(O) = 0 and va (0) = - 1.

PROOF: Choose N*  - 03BD~(t) so large that (6.3) holds for all 03B4 &#x3E; N* -

D(a) = N. Then f or Re(s) &#x3E; 1,
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by partial summation. Invoking (6.3), we see that Za(s, t ) is rational in
q-ds with denominator 1 - qd(1-s). Setting s = 0, we find

The proof for Va(s) goes the same way.

For a ~ I~ and t E kBa, we define

The functions ua : kBa ~ R satisfy the distribution properties introduced
by B. Mazur (cf. [5] and §1 of [11]):

I. For any x E k, uxa(xt) = ua(t).
II. For all a ~ a, ua(t + a) = ua(t).

III. Let b E M~. Then

where "a E a mod b " means that a runs through a complete set of
representatives for the cosets of ab in a. The proofs of 1-111 are

straight-forward and are left to the reader.
We turn now to the L-function (1.1) associated to a character Bfi E Gm

for a fixed ideal mE M~, me e. Let I(m) ç 100 consist of the fractional
ideals prime to m, and let P(m) ~ I(m) consist of the principal ideals
which can be generated by an element x E k* such that x * 1 (mod m).
Since Hm is the ray class field which is completely split over oo, P( rrt ) is
the kemel of the Artin map from I(m) onto Gm . We may therefore view
Bfi as defined either on the ideals b ~ I(m) or on the "classes" y ~
I(m)/P(m). In the sequel, whenever a summation over "b" (resp. "y")
appears, we understand that the summation is over ideals (resp. classes)
in I(m) ~ M~ (resp. I(m)/P(m)).

Multiplying out the product in (1.1) over the finite places, we find that

for Re( s ) &#x3E; 1. For a given class lî, choose c ~ y ~ M~. Then b ~ y ~ M~
if and only if b = x c for some x =1 (mod m), x ~ c-1. Therefore for
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Re(s) &#x3E; 1, we have

We call 03B6y(s) the partial zeta-function associated to the class cc. We see
from Proposition 6.1 that 03B6y(s) is a rational function of q-s with no
singularity other than a first order pole at s = 1. Therefore, the same is
true of

Since 03B6y(0) = 0, Lm(s, 03C8) is defined at s = 0, and we see via l’Hopital
from (6.8) that

which by (6.7) we may rewrite in the form

where c E Moo runs through any complete set of representatives for the
classes in I(m)/P(m). Our aim now is to evaluate the right hand side of
(6.9) in terms of the element À defined by (5.5).

For a ~ I~, t ~ kBa and Re( s ) &#x3E; 1, we compute from the definition
(6.4)

where

Now deg(1+t/a) = -dv~(1+t/a) = 0 for all but finitely many ele-
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ments a E a and so

To evaluate H(O), we note that for Re(s ) &#x3E; 1

where G ( s ) is a polynomial in q-s such that G(0) = 0. Thus, H(o) is
independent of t, and our value for ua(t) becomes

where Ja is (log q)-1 times dVa/ds evaluated at s = 0. We may use (6.10)
to evaluate Ja. For any positive x E A and Re( s ) &#x3E; 1, we have

which implies, by the distribution property I, that

Dividing by N(x) above and taking the limit as N(x) gets large, we see
from Lemma 5.2 that in fact Ja = dv~(03BE(a)). We have proved

THEOREM 6.1: For any a E 100 and t E kBa, we have
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We can now show that the element a=-03BBW~~Hm, where À is

defined by (5.5), is an Lm-function evaluator at s = 0. Using (6.11) with
t = 1 to evaluate the quantities uc-1m(1) appearing on the right hand side
of (6.9), we find that

by Theorem 5.1 with 0393 = m, where c ~ M~ runs through a set of

representatives for the classes in I(m)/P(m). Appealing to Theorem
4.12, we see that

as required. Putting this evaluation together with the results of §4, we see
that the element a does indeed meet the requirement of hypothesis S~ of
§3.
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