This paper deals with the
@article{ASNSP_2008_5_7_1_1_0, author = {Astala, Kari and Faraco, Daniel and Sz\'ekelyhidi Jr., L\'aszl\'o}, title = {Convex integration and the $L^p$ theory of elliptic equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {1--50}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 7}, number = {1}, year = {2008}, zbl = {1164.30014}, language = {en}, url = {https://www.numdam.org/item/ASNSP_2008_5_7_1_1_0/} }
TY - JOUR AU - Astala, Kari AU - Faraco, Daniel AU - Székelyhidi Jr., László TI - Convex integration and the $L^p$ theory of elliptic equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2008 SP - 1 EP - 50 VL - 7 IS - 1 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2008_5_7_1_1_0/ LA - en ID - ASNSP_2008_5_7_1_1_0 ER -
%0 Journal Article %A Astala, Kari %A Faraco, Daniel %A Székelyhidi Jr., László %T Convex integration and the $L^p$ theory of elliptic equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2008 %P 1-50 %V 7 %N 1 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2008_5_7_1_1_0/ %G en %F ASNSP_2008_5_7_1_1_0
Astala, Kari; Faraco, Daniel; Székelyhidi Jr., László. Convex integration and the $L^p$ theory of elliptic equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 7 (2008) no. 1, pp. 1-50. https://www.numdam.org/item/ASNSP_2008_5_7_1_1_0/
[1] Area distortion of quasiconformal mappings, Acta Math. 173 (1994), 37-60. | MR | Zbl
,[2] Pucci's conjecture and the Alexandrov inequality for elliptic PDEs in the plane, J. Reine Angew. Math. 591 (2006), 49-74. | MR | Zbl
, and ,[3] “Elliptic Partial Diffential Equations and Quasiconformal Mappings in the Plane”, to appear. | MR | Zbl
, and ,[4] Beltrami operators in the plane, Duke Math. J. 107 (2001), 27-56. | MR | Zbl
, and ,[5] On Hölder regularity for elliptic equations of non-divergence type in the plane, Ann. Scuola Norm. Super. Pisa Cl. Sci. (5) (2005), 295-317. | Numdam | MR | Zbl
and[6] Homeomorphic solutions of Beltrami systems, Dokl. Akad. Nauk SSSR (N.S.) 102 (1955), 661-664. | MR
,[7] Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients, Mat. Sb. N.S. 43 (1957), 451-503. | MR
,
[8] A new approach to counterexamples to
[9] Rank-one convex functions on
[10] “Direct Methods in the Calculus of Variations”, Applied Mathematical Sciences, Vol. 78, Springer-Verlag, Berlin, 1989. | MR | Zbl
,[11] General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases, Acta Math. 178 (1997), 1-37. | MR | Zbl
and ,[12] “Implicit partial differential equations”, Progress in Nonlinear Differential Equations and their Applications, Vol. 37, Birkhäuser Boston Inc., Boston, MA, 1999. | MR | Zbl
and ,[13] Sharp estimate of the Ahlfors-Beurling operator via averaging martingale transforms, Michigan Math. J. 51 (2003), 415-435. | MR | Zbl
and ,[14] “Quasiconvex Hulls and the Homogenization of Differential Operators”, Licenciate thesis, University of Jyväskylä, 2000.
,[15] Milton's conjecture on the regularity of solutions to isotropic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 889-909. | Numdam | MR | Zbl
,[16] Tartar conjecture and Beltrami operators, Michigan Math. J. 52 (2004), 83-104. | MR | Zbl
,[17] D. Faraco and L. Székelyhidi Jr., in preparation.
[18] “Partial differential relations”, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 9, Springer-Verlag, Berlin, 1986. | MR | Zbl
,[19] “Geometric Function Theory and Non-Linear Analysis”, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2001. | MR | Zbl
and ,[20] Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143-161. | MR | Zbl
and ,[21] “Rigidity and Geometry of Microstructures”, Habilitation thesis, University of Leipzig, 2003.
,[22] Studying nonlinear PDE by geometry in matrix space, In: “Geometric analysis and Nonlinear partial differential equations”, S. Hildebrandt and H. Karcher (eds.), Springer-Verlag, 2003, 347-395. | MR
, and ,[23] “Quasiconformal Mappings in the Plane”, second ed. Springer-Verlag, New York, 1973. Translated from the German by K. W. Lucas, Die Grundlehren der mathematischen Wissenschaften, Band 126. | MR | Zbl
and ,[24] Quasiconformal solutions to certain first order systems and the proof of a conjecture of G. W. Milton, J. Math. Pures Appl. (9) 76 (1997), 109-124. | MR | Zbl
and ,[25] Examples of weak minimizers with continuous singularities, Expo. Math. 13 (1995), 446-454. | MR | Zbl
,
[26] An
[27] Modelling the properties of composites by laminates, In: “Homogenization and Effective Moduli of Materials and Media” (Minneapolis, Minn., 1984/1985), IMA Vol. Math. Appl., Vol. 1, Springer, New York, 1986, 150-174. | MR | Zbl
,[28] Variational models for microstructure and phase transitions, In: “Calculus of Variations and Geometric Evolution Problems”, (Cetraro, 1996), Lecture Notes in Math., Vol. 1713, Springer, Berlin, 1999, 85-210. | MR | Zbl
,[29] Attainment results for the two-well problem by convex integration, In: “Geometric Analysis and the Calculus of Variations”, Internat. Press, Cambridge, MA, 1996, 239-251. | MR | Zbl
and ,[30] Convex integration for Lipschitz mappings and counterexamples to regularity, Ann. of Math. (2) 157 (2003), 715-742. | MR | Zbl
and ,[31] “Measure and Category”, second ed., Graduate Texts in Mathematics, Vol. 2, Springer-Verlag, New York, 1980. | MR | Zbl
,[32] Laminates and microstructure, European J. Appl. Math. 4 (1993), 121-149. | MR | Zbl
,[33] Fully explicit quasiconvexification of the mean-square deviation of the gradient of the state in optimal design, Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 72-78. | MR | Zbl
,[34] Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular, Duke Math. J. 112 (2002), 281-305. | MR | Zbl
and ,[35] On the Hölder continuity of solutions of second order elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 26 (1972), 391-402. | Numdam | MR | Zbl
and ,[36] Operatori ellittici estremanti, Ann. Mat. Pura Appl. (4) 72 (1966), 141-170. | MR | Zbl
,[37] Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 18 (1964), 385-387. | Numdam | MR | Zbl
,[38] Comparing two methods of resolving homogeneous differential inclusions, Calc. Var. Partial Differential Equations 13 (2001), 213-229. | MR | Zbl
,[39] Few remarks on differential inclusions, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), 649-668. | MR | Zbl
,[40] The regularity of critical points of polyconvex functionals, Arch. Ration. Mech. Anal. 172 (2004), 133-152. | MR | Zbl
,[41] L. Compensated compactness and applications to partial differential equations, In: “Nonlinear Analysis and Mechanics: Heriot-Watt Symposium”, Vol. IV, Res. Notes in Math., Vol. 39, Pitman, Boston, Mass., 1979, 136-212. | MR | Zbl
,[42] A linear boundary value problem for weakly quasiregular mappings in space, Calc. Var. Partial Differential Equations 13 (2001), 295-310. | MR | Zbl
,[43] A Baire's category method for the Dirichlet problem of quasiregular mappings, Trans. Amer. Math. Soc. 355 (2003), 4755-4765. | MR | Zbl
,