On Hölder regularity for elliptic equations of non-divergence type in the plane
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 2, pp. 295-317.

This paper is concerned with strong solutions of uniformly elliptic equations of non-divergence type in the plane. First, we use the notion of quasiregular gradient mappings to improve Morrey's theorem on the Hölder continuity of gradients of solutions. Then we show that the Gilbarg-Serrin equation does not produce the optimal Hölder exponent in the considered class of equations. Finally, we propose a conjecture for the best possible exponent and prove it under an additional restriction.

Classification : 35B65, 30C62, 35J15
Baernstein II, Albert 1 ; Kovalev, Leonid V. 1

1 Department of Mathematics Washington University Saint Louis, Missouri 63130, USA
@article{ASNSP_2005_5_4_2_295_0,
     author = {Baernstein II, Albert and Kovalev, Leonid V.},
     title = {On {H\"older} regularity for elliptic equations of non-divergence type in the plane},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {295--317},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 4},
     number = {2},
     year = {2005},
     mrnumber = {2163558},
     zbl = {1150.35021},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2005_5_4_2_295_0/}
}
TY  - JOUR
AU  - Baernstein II, Albert
AU  - Kovalev, Leonid V.
TI  - On Hölder regularity for elliptic equations of non-divergence type in the plane
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2005
SP  - 295
EP  - 317
VL  - 4
IS  - 2
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2005_5_4_2_295_0/
LA  - en
ID  - ASNSP_2005_5_4_2_295_0
ER  - 
%0 Journal Article
%A Baernstein II, Albert
%A Kovalev, Leonid V.
%T On Hölder regularity for elliptic equations of non-divergence type in the plane
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2005
%P 295-317
%V 4
%N 2
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2005_5_4_2_295_0/
%G en
%F ASNSP_2005_5_4_2_295_0
Baernstein II, Albert; Kovalev, Leonid V. On Hölder regularity for elliptic equations of non-divergence type in the plane. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 4 (2005) no. 2, pp. 295-317. http://www.numdam.org/item/ASNSP_2005_5_4_2_295_0/

[1] L. V. Ahlfors, On quasiconformal mappings, J. Anal. Math. 3 (1954), 1-58. | MR | Zbl

[2] K. Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), 37-60. | MR | Zbl

[3] K. Astala, D. Faraco and L. Székelyhidi Jr., Convex integration and the L p theory of elliptic equations, Max Planck Institute MIS, preprint no. 70 (2004).

[4] K. Astala, T. Iwaniec and G. Martin, Pucci's conjecture and the Alexandrov inequality for elliptic PDEs in the plane, to appear in J. Reine Angew. Math. | MR | Zbl

[5] K. Astala, T. Iwaniec and G. Martin, “Elliptic partial differential equations and quasiconformal mappings in the plane”, monograph in preparation. | Zbl

[6] K. Astala, T. Iwaniec and E. Saksman, Beltrami operators in the plane, Duke Math. J. 107 (2001), 27-56. | MR | Zbl

[7] P. Bénilan and F. Bouhsiss, Une remarque sur l'unicité des solutions pour l'opérateur de Serrin, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 611-616. | MR | Zbl

[8] L. Bers, “Mathematical aspects of subsonic and transonic gas dynamics”, Surveys in Applied Math., vol. 3, John Wiley & Sons, New York, 1958. | MR | Zbl

[9] L. Bers and M. Schechter, Elliptic equations, In: “Partial Differential Equations” (Proc. Summer Seminar, Boulder, Colorado, 1957), 131-299; Interscience, New York, 1964. | MR | Zbl

[10] B. Bojarski, Subsonic flow of compressible fluid, Arch. Mech. (Arch. Mech. Stos.) 18 (1966), 497-520. | MR | Zbl

[11] P. Buonocore and P. Manselli, Nonunique continuation for plane uniformly elliptic equations in Sobolev spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), 731-754. | Numdam | MR | Zbl

[12] L. A. Caffarelli and X. Cabré, “Fully nonlinear elliptic equations”, AMS Colloquium Publications, vol. 43. AMS, Providence, 1995. | MR | Zbl

[13] L. A. Caffarelli, E. B. Fabes and C. E. Kenig, Completely singular elliptic-harmonic measures, Indiana Univ. Math. J. 30 (1981), 917-924. | MR | Zbl

[14] F. Chiarenza, M. Frasca and P. Longo, W 2,p -solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 336 (1993), 841-853. | MR | Zbl

[15] L. D'Onofrio and L. Greco, On the regularity of solutions to a nonvariational elliptic equation, Ann. Fac. Sci. Toulouse Math. (6) 11 (2002), 47-56. | Numdam | MR | Zbl

[16] L. C. Evans and R. F. Gariepy, “Measure theory and fine properties of functions”, CRC Press, Boca Raton, 1992. | MR | Zbl

[17] R. Finn and J. Serrin, On the Hölder continuity of quasiconformal and elliptic mappings, Trans. Amer. Math. Soc. 89 (1958), 1-15. | MR | Zbl

[18] C. Giannotti, A compactly supported solution to a three-dimensional uniformly elliptic equation without zero-order term, J. Differential Equations 201 (2004), 234-249. | MR | Zbl

[19] D. Gilbarg and J. Serrin, On isolated singularities of solutions of second order elliptic differential equations, J. Anal. Math. 4 (1955/56), 309-340. | MR | Zbl

[20] D. Gilbarg and N. S. Trudinger, “Elliptic partial differential equations of second order”, 2nd ed. Springer-Verlag, Berlin-Heidelberg-New York, 1983. | MR | Zbl

[21] L. Greco and C. Sbordone, Sharp upper bounds for the degree of regularity of the solutions to an elliptic equation, Comm. Partial Differential Equations 27 (2002), 945-952. | MR | Zbl

[22] P. Hartman, Hölder continuity and non-linear elliptic partial differential equations, Duke Math. J. 25 (1958), 57-65. | MR | Zbl

[23] T. Iwaniec and J. J. Manfredi, Regularity of p-harmonic functions on the plane, Rev. Mat. Iberoamericana 5 (1989), no. 1-2, 1-19. | MR | Zbl

[24] T. Iwaniec and G. Martin, “Geometric function theory and nonlinear analysis”, Oxford Univ. Press, Oxford-New York, 2001. | Zbl

[25] R. R. Jensen, Uniformly elliptic PDEs with bounded, measurable coefficients, J. Fourier Anal. Appl. 2 (1996), 237-259. | MR | Zbl

[26] C. E. Kenig, Potential theory of non-divergence form elliptic equations, In: “Dirichlet forms”, 89-128, Lecture Notes in Math., vol. 563, Springer-Verlag, Berlin-Heidelberg-New York, 1993. | MR | Zbl

[27] C. E. Kenig, “Harmonic analysis techniques for second order elliptic boundary value problems”, CBMS Regional Conference Series in Mathematics, vol. 83, AMS, Providence, 1994. | MR | Zbl

[28] L. V. Kovalev and D. Opěla, Quasiregular gradient mappings and strong solutions of elliptic equations | MR | Zbl

[29] O. A. Ladyzhenskaya and N. N. Ural'Tseva, “Linear and quasilinear elliptic equations”, Academic Press, New York-London, 1968. | MR | Zbl

[30] F. Leonetti and V. Nesi, Quasiconformal solutions to certain first order systems and the proof of a conjecture of G. W. Milton, J. Math. Pures Appl. (9) 76 (1997), 109-124. | MR | Zbl

[31] V. A. Liskevich, On C 0 -semigroups generated by elliptic second order differential expressions on L p -spaces, Differential Integral Equations 9 (1996), 811-826. | MR | Zbl

[32] J. J. Manfredi, p-harmonic functions in the plane, Proc. Amer. Math. Soc. 103 (1988), 473-479. | MR | Zbl

[33] N. G. Meyers, An L p -estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 189-206. | Numdam | MR | Zbl

[34] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166. | JFM | MR

[35] C. B. Morrey, “Multiple Integrals in the Calculus of Variations”, Springer-Verlag, Berlin-Heidelberg-New York, 1966. | MR | Zbl

[36] N. Nadirashvili, Nonuniqueness in the martingale problem and the Dirichlet problem for uniformly elliptic operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 537-549. | Numdam | MR | Zbl

[37] L. Nirenberg, On nonlinear elliptic partial differential equations and Hölder continuity, Comm. Pure Appl. Math. 6 (1953), 103-156. | MR | Zbl

[38] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 13 (1959), 115-162. | Numdam | MR | Zbl

[39] S. Petermichl and A. Volberg, Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular, Duke Math. J. 112 (2002), 281-305. | MR | Zbl

[40] L. C. Piccinini and S. Spagnolo, On the Hölder continuity of solutions of second order elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 26 (1972), 391-402. | Numdam | MR | Zbl

[41] C. Pucci, Un problema variazionale per i coefficienti di equazioni differenziali di tipo ellittico, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 16 (1962), 159-172. | Numdam | MR | Zbl

[42] C. Pucci, Limitazioni per soluzioni di equazioni ellittiche, Ann. Mat. Pura Appl. (4) 74 (1966), 15-30. | MR | Zbl

[43] Yu. G. Reshetnyak, “Space mappings with bounded distortion”, Translations of Mathematical Monographs, vol. 73. AMS, Providence, 1989. | MR | Zbl

[44] T. Ricciardi, A sharp Hölder estimate for elliptic equations in two variables, Proc. Roy. Soc. Edimburgh 135/A (2005), 165-173. | MR | Zbl

[45] S. Rickman, “Quasiregular mappings”, Springer-Verlag, Berlin-Heidelberg -New York, 1993. | MR | Zbl

[46] M. V. Safonov, Unimprovability of estimates of Hölder constants for solutions of linear elliptic equations with measurable coefficients, Math. USSR-Sb. 60 (1988), 269-281. | MR | Zbl

[47] M. V. Safonov, Nonuniqueness for second-order elliptic equations with measurable coefficients, SIAM J. Math. Anal. 30 (1999), 879-895. | MR | Zbl

[48] J. Serrin, Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 18 (1964), 385-387. | Numdam | MR | Zbl

[49] G. Talenti, Equazioni lineari ellittiche in due variabili, Matematiche (Catania) 21 (1966), 339-376. | MR | Zbl

[50] K. O. Widman, On the Hölder continuity of solutions of elliptic partial differential equations in two variables with coefficients in L , Comm. Pure. Appl. Math. 22 (1969), 669-682. | MR | Zbl

[51] A. Zygmund, “Trigonometric Series”, 3rd ed., Cambridge Univ. Press, Cambridge, 2002. | MR | Zbl