In the present paper we explain the classification of oscillations and its relation to the loss of derivatives for a homogeneous hyperbolic operator of second order. In this way we answer the open question if the assumptions to get
@article{ASNSP_2004_5_3_3_589_0, author = {Hirosawa, Fumihiko and Reissig, Michael}, title = {Non-Lipschitz coefficients for strictly hyperbolic equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {589--608}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 3}, number = {3}, year = {2004}, mrnumber = {2099250}, zbl = {1170.35471}, language = {en}, url = {https://www.numdam.org/item/ASNSP_2004_5_3_3_589_0/} }
TY - JOUR AU - Hirosawa, Fumihiko AU - Reissig, Michael TI - Non-Lipschitz coefficients for strictly hyperbolic equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2004 SP - 589 EP - 608 VL - 3 IS - 3 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2004_5_3_3_589_0/ LA - en ID - ASNSP_2004_5_3_3_589_0 ER -
%0 Journal Article %A Hirosawa, Fumihiko %A Reissig, Michael %T Non-Lipschitz coefficients for strictly hyperbolic equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2004 %P 589-608 %V 3 %N 3 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2004_5_3_3_589_0/ %G en %F ASNSP_2004_5_3_3_589_0
Hirosawa, Fumihiko; Reissig, Michael. Non-Lipschitz coefficients for strictly hyperbolic equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 3, pp. 589-608. https://www.numdam.org/item/ASNSP_2004_5_3_3_589_0/
[1] Operators of
[2] Coefficients with unbounded derivatives in hyperbolic equations, to appear in Math. Nachr. | MR | Zbl
,[3] Sur les equations hyperboliques avec des coefficients qui ne dependent que du temps, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 (1979), 511-559. | EuDML | Numdam | MR | Zbl
- - ,[4] Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 1 (2002), 327-358. | EuDML | Numdam | MR | Zbl
- - ,[5] On the optimal regularity of coefficients in hyperbolic Cauchy problems, Bull. Sci. Math. 127 (2003), 328-347. | MR | Zbl
- - ,[6] Hyperbolic operators with non-Lipschitz coefficients, Duke Math. J. 77 (1995), 657-698. | MR | Zbl
- ,[7] On the Cauchy problem for second order strictly hyperbolic equations with non-regular coefficients, Math. Nachr. 256 (2003), 29-47. | MR | Zbl
,[8] Well-posedness in Sobolev spaces for second order strictly hyperbolic equations with non-differentiable oscillating coefficients, Ann. Global Anal. Geom. 25 (2004), 99-119. | MR | Zbl
- ,[9] “Theory of the partial differential equations", Cambridge University Press, 1973. | MR | Zbl
,[10] Hyperbolic equations with non-Lipschitz coefficients, Rend. Sem. Mat. Univ. Politec. Torino 61 (2003), 135-182. | MR | Zbl
,
[11]
[12] “The Cauchy Problem for Hyperbolic Operators. Multiple Characteristics, Micro-Local Approach", Akademie-Verlag, Berlin, 1997. | MR | Zbl
,
[13] On the