We prove that the Cauchy problem for a class of hyperbolic equations with non-Lipschitz coefficients is well-posed in and in Gevrey spaces. Some counter examples are given showing the sharpness of these results.
@article{ASNSP_2002_5_1_2_327_0, author = {Colombini, Ferruccio and del Santo, Daniele and Kinoshita, Tamotu}, title = {Well-posedness of the {Cauchy} problem for a hyperbolic equation with {non-Lipschitz} coefficients}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {327--358}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 1}, number = {2}, year = {2002}, mrnumber = {1991143}, zbl = {1098.35094}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2002_5_1_2_327_0/} }
TY - JOUR AU - Colombini, Ferruccio AU - del Santo, Daniele AU - Kinoshita, Tamotu TI - Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2002 SP - 327 EP - 358 VL - 1 IS - 2 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_2002_5_1_2_327_0/ LA - en ID - ASNSP_2002_5_1_2_327_0 ER -
%0 Journal Article %A Colombini, Ferruccio %A del Santo, Daniele %A Kinoshita, Tamotu %T Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2002 %P 327-358 %V 1 %N 2 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_2002_5_1_2_327_0/ %G en %F ASNSP_2002_5_1_2_327_0
Colombini, Ferruccio; del Santo, Daniele; Kinoshita, Tamotu. Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 2, pp. 327-358. http://www.numdam.org/item/ASNSP_2002_5_1_2_327_0/
[1] Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temp, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 6 (1979), 511-559. | Numdam | MR | Zbl
- - ,[2] On the Cauchy problem for hyperbolic operators with non-regular coefficients, to appear in Proceedings of the Conference “À la mémoire de Jean Leray” Karlskrona 2000, M. de Gosson - J. Vaillant (eds.), Kluwer, New York. | MR | Zbl
- - ,[3] Hyperbolic operators with non-Lipschitz coefficients, Duke Math. J. 77 (1995), 657-698. | MR | Zbl
- ,[4] Some examples of hyperbolic equations without local solvability, Ann. Sci. École Norm. Sup. (4) 22 (1989), 109-125. | Numdam | MR | Zbl
- ,[5] “Linear Partial Differential Operators”, Springer-Verlag, Berlin, 1963. | Zbl
,[6] Regularly hyperbolic systems and Gevrey classes, Ann. Mat. Pura Appl. 140 (1985), 133-145. | MR | Zbl
,[7] Sur les équations hyperboliques à coefficients höldériens en et de classe de Gevrey en , Bull. Sci. Math. 107 (1983), 113-138. | MR | Zbl
,