[Les conjectures de Hodge et de Bloch généralisées sont équivalentes pour les intersections complètes générales]
Nous montrons la conjecture de Bloch pour les surfaces avec
We prove that Bloch’s conjecture is true for surfaces with
Keywords: algebraic cycles, Bloch conjecture, generalized Hodge conjecture
Mot clés : cycles algébriques, conjecture de Bloch, conjecture de Hodge généralisée
@article{ASENS_2013_4_46_3_449_0, author = {Voisin, Claire}, title = {The generalized {Hodge} and {Bloch} conjectures are equivalent for general complete intersections}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {449--475}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 46}, number = {3}, year = {2013}, doi = {10.24033/asens.2193}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2193/} }
TY - JOUR AU - Voisin, Claire TI - The generalized Hodge and Bloch conjectures are equivalent for general complete intersections JO - Annales scientifiques de l'École Normale Supérieure PY - 2013 SP - 449 EP - 475 VL - 46 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2193/ DO - 10.24033/asens.2193 LA - en ID - ASENS_2013_4_46_3_449_0 ER -
%0 Journal Article %A Voisin, Claire %T The generalized Hodge and Bloch conjectures are equivalent for general complete intersections %J Annales scientifiques de l'École Normale Supérieure %D 2013 %P 449-475 %V 46 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2193/ %R 10.24033/asens.2193 %G en %F ASENS_2013_4_46_3_449_0
Voisin, Claire. The generalized Hodge and Bloch conjectures are equivalent for general complete intersections. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 46 (2013) no. 3, pp. 449-475. doi : 10.24033/asens.2193. https://www.numdam.org/articles/10.24033/asens.2193/
[1] On the Griffiths group of the cubic sevenfold, Math. Ann. 299 (1994), 715-726. | MR
& ,[2] Lectures on algebraic cycles, second éd., New Mathematical Monographs 16, Cambridge Univ. Press, 2010. | MR
,[3] Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983), 1235-1253. | MR
& ,[4] Remarks on the Lefschetz standard conjecture and hyperkähler varieties, preprint 2010, to appear in Comm. Math. Helv. | MR
,[5] Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. J. 161 (2012), 735-801. | MR
& ,[6] Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Publ. Math. I.H.É.S. 35 (1968), 259-278. | MR
,[7] Chow groups of projective varieties of very small degree, Duke Math. J. 87 (1997), 29-58. | MR
, & ,[8] A compactification of configuration spaces, Ann. of Math. 139 (1994), 183-225. | MR
& ,[9] Hodge-theoretic invariants for algebraic cycles, Int. Math. Res. Not. 2003 (2003), 477-510. | MR
& ,[10] Hodge's general conjecture is false for trivial reasons, Topology 8 (1969), 299-303. | MR | Zbl
,[11] Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), 941-1006. | MR | Zbl
,[12] Chow groups are finite dimensional, in some sense, Math. Ann. 331 (2005), 173-201. | MR | Zbl
,[13] Algebraic cycles and the Weil conjectures, in Dix exposés sur la cohomologie des schémas, North-Holland, 1968, 359-386. | MR | Zbl
,[14] Algebraic varieties with small Chow groups, J. Math. Kyoto Univ. 38 (1998), 673-694. | MR | Zbl
,[15] Letter to the author, June 24th, 2011.
& ,[16] A generalization of Mumford's theorem. II, Illinois J. Math. 39 (1995), 288-304. | MR | Zbl
,
[17] Rational equivalence of
[18] On the motive of an algebraic surface, J. reine angew. Math. 409 (1990), 190-204. | EuDML | MR | Zbl
,[19] Algebraic cycles and Hodge-theoretic connectivity, Invent. Math. 111 (1993), 349-373. | EuDML | MR | Zbl
,[20] Remarques sur les cycles de petite dimension de certaines intersections complètes, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 141-146. | MR | Zbl
,[21] Remarques sur les groupes de Chow des hypersurfaces de petit degré, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 51-56. | MR | Zbl
,[22] Cohomological and cycle-theoretic connectivity, Ann. of Math. 139 (1994), 641-660. | MR | Zbl
,[23] Bloch-type conjectures and an example of a three-fold of general type, Commun. Contemp. Math. 12 (2010), 587-605. | MR | Zbl
,
[24] The torsion of the group of
[25] Motives and filtrations on Chow groups, Invent. Math. 125 (1996), 149-196. | MR | Zbl
,[26] On Hodge structures and nonrepresentability of Chow groups, Compositio Math. 88 (1993), 285-316. | EuDML | Numdam | MR | Zbl
,[27] Submanifolds of Abelian varieties, Math. Ann. 233 (1978), 229-256. | EuDML | MR | Zbl
,[28] Infinitesimal variation of Hodge structures and the weak global Torelli theorem for complete intersections, Ann. of Math. 132 (1990), 213-235. | MR | Zbl
,[29] Sur les zéro-cycles de certaines hypersurfaces munies d'un automorphisme, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 19 (1992), 473-492. | EuDML | Numdam | MR | Zbl
,[30] Remarks on zero-cycles of self-products of varieties, in Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), Lecture Notes in Pure and Appl. Math. 179, Dekker, 1996, 265-285. | MR | Zbl
,[31] Sur les groupes de Chow de certaines hypersurfaces, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 73-76. | MR | Zbl
,[32] Hodge theory and complex algebraic geometry. I and II, Cambridge Studies in Advanced Math. 76 and 77, Cambridge Univ. Press, 2002, 2003. | MR | Zbl
,[33] Coniveau 2 complete intersections and effective cones, Geom. Funct. Anal. 19 (2010), 1494-1513. | MR | Zbl
,[34] Lectures on the Hodge and Grothendieck-Hodge conjectures, Rend. Semin. Mat. Univ. Politec. Torino 69 (2011), 149-198. | MR | Zbl
,Cité par Sources :