The generalized Hodge and Bloch conjectures are equivalent for general complete intersections
[Les conjectures de Hodge et de Bloch généralisées sont équivalentes pour les intersections complètes générales]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 46 (2013) no. 3, pp. 449-475.

Nous montrons la conjecture de Bloch pour les surfaces avec pg=0 obtenues comme lieux des zéros Xσ d’une section σ d’un fibré vectoriel très ample sur une variété X à groupes de Chow « triviaux ». Nous obtenons un résultat similaire en présence d’une action d’un groupe fini, montrant que si un projecteur du groupe agit comme 0 sur les 2-formes holomorphes de Xσ, il agit comme 0 sur les 0-cycles de degré 0 de Xσ. En dimension supérieure, nous obtenons un résultat similaire mais conditionnel montrant que la conjecture de Hodge généralisée pour Xσ générale entraîne la conjecture de Bloch généralisée pour tout Xσ lisse, en supposant satisfaite la conjecture de Lefschetz standard (cette dernière hypothèse n’étant pas nécessaire en dimension 3).

We prove that Bloch’s conjecture is true for surfaces with pg=0 obtained as 0-sets Xσ of a section σ of a very ample vector bundle on a variety X with “trivial” Chow groups. We get a similar result in presence of a finite group action, showing that if a projector of the group acts as 0 on holomorphic 2-forms of Xσ, then it acts as 0 on 0-cycles of degree 0 of Xσ. In higher dimension, we also prove a similar but conditional result showing that the generalized Hodge conjecture for general Xσ implies the generalized Bloch conjecture for any smooth Xσ, assuming the Lefschetz standard conjecture (the last hypothesis is not needed in dimension 3).

DOI : 10.24033/asens.2193
Classification : 14C25, 14C30
Keywords: algebraic cycles, Bloch conjecture, generalized Hodge conjecture
Mot clés : cycles algébriques, conjecture de Bloch, conjecture de Hodge généralisée
@article{ASENS_2013_4_46_3_449_0,
     author = {Voisin, Claire},
     title = {The generalized {Hodge} and {Bloch} conjectures are equivalent for general complete intersections},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {449--475},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 46},
     number = {3},
     year = {2013},
     doi = {10.24033/asens.2193},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.2193/}
}
TY  - JOUR
AU  - Voisin, Claire
TI  - The generalized Hodge and Bloch conjectures are equivalent for general complete intersections
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2013
SP  - 449
EP  - 475
VL  - 46
IS  - 3
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/asens.2193/
DO  - 10.24033/asens.2193
LA  - en
ID  - ASENS_2013_4_46_3_449_0
ER  - 
%0 Journal Article
%A Voisin, Claire
%T The generalized Hodge and Bloch conjectures are equivalent for general complete intersections
%J Annales scientifiques de l'École Normale Supérieure
%D 2013
%P 449-475
%V 46
%N 3
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/asens.2193/
%R 10.24033/asens.2193
%G en
%F ASENS_2013_4_46_3_449_0
Voisin, Claire. The generalized Hodge and Bloch conjectures are equivalent for general complete intersections. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 46 (2013) no. 3, pp. 449-475. doi : 10.24033/asens.2193. https://www.numdam.org/articles/10.24033/asens.2193/

[1] A. Albano & A. Collino, On the Griffiths group of the cubic sevenfold, Math. Ann. 299 (1994), 715-726. | MR

[2] S. Bloch, Lectures on algebraic cycles, second éd., New Mathematical Monographs 16, Cambridge Univ. Press, 2010. | MR

[3] S. Bloch & V. Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983), 1235-1253. | MR

[4] F. Charles, Remarks on the Lefschetz standard conjecture and hyperkähler varieties, preprint 2010, to appear in Comm. Math. Helv. | MR

[5] J.-L. Colliot-Thélène & C. Voisin, Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. J. 161 (2012), 735-801. | MR

[6] P. Deligne, Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Publ. Math. I.H.É.S. 35 (1968), 259-278. | MR

[7] H. Esnault, M. Levine & E. Viehweg, Chow groups of projective varieties of very small degree, Duke Math. J. 87 (1997), 29-58. | MR

[8] W. Fulton & R. Macpherson, A compactification of configuration spaces, Ann. of Math. 139 (1994), 183-225. | MR

[9] M. Green & P. Griffiths, Hodge-theoretic invariants for algebraic cycles, Int. Math. Res. Not. 2003 (2003), 477-510. | MR

[10] A. Grothendieck, Hodge's general conjecture is false for trivial reasons, Topology 8 (1969), 299-303. | MR | Zbl

[11] M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), 941-1006. | MR | Zbl

[12] S.-I. Kimura, Chow groups are finite dimensional, in some sense, Math. Ann. 331 (2005), 173-201. | MR | Zbl

[13] S. L. Kleiman, Algebraic cycles and the Weil conjectures, in Dix exposés sur la cohomologie des schémas, North-Holland, 1968, 359-386. | MR | Zbl

[14] R. Laterveer, Algebraic varieties with small Chow groups, J. Math. Kyoto Univ. 38 (1998), 673-694. | MR | Zbl

[15] M. Lehn & C. Sorger, Letter to the author, June 24th, 2011.

[16] J. D. Lewis, A generalization of Mumford's theorem. II, Illinois J. Math. 39 (1995), 288-304. | MR | Zbl

[17] D. Mumford, Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195-204. | MR | Zbl

[18] J. P. Murre, On the motive of an algebraic surface, J. reine angew. Math. 409 (1990), 190-204. | EuDML | MR | Zbl

[19] M. V. Nori, Algebraic cycles and Hodge-theoretic connectivity, Invent. Math. 111 (1993), 349-373. | EuDML | MR | Zbl

[20] A. Otwinowska, Remarques sur les cycles de petite dimension de certaines intersections complètes, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 141-146. | MR | Zbl

[21] A. Otwinowska, Remarques sur les groupes de Chow des hypersurfaces de petit degré, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 51-56. | MR | Zbl

[22] K. H. Paranjape, Cohomological and cycle-theoretic connectivity, Ann. of Math. 139 (1994), 641-660. | MR | Zbl

[23] C. Peters, Bloch-type conjectures and an example of a three-fold of general type, Commun. Contemp. Math. 12 (2010), 587-605. | MR | Zbl

[24] A. A. Rojtman, The torsion of the group of 0-cycles modulo rational equivalence, Ann. of Math. 111 (1980), 553-569. | MR | Zbl

[25] S. Saito, Motives and filtrations on Chow groups, Invent. Math. 125 (1996), 149-196. | MR | Zbl

[26] C. Schoen, On Hodge structures and nonrepresentability of Chow groups, Compositio Math. 88 (1993), 285-316. | EuDML | Numdam | MR | Zbl

[27] A. J. Sommese, Submanifolds of Abelian varieties, Math. Ann. 233 (1978), 229-256. | EuDML | MR | Zbl

[28] T. Terasoma, Infinitesimal variation of Hodge structures and the weak global Torelli theorem for complete intersections, Ann. of Math. 132 (1990), 213-235. | MR | Zbl

[29] C. Voisin, Sur les zéro-cycles de certaines hypersurfaces munies d'un automorphisme, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 19 (1992), 473-492. | EuDML | Numdam | MR | Zbl

[30] C. Voisin, Remarks on zero-cycles of self-products of varieties, in Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), Lecture Notes in Pure and Appl. Math. 179, Dekker, 1996, 265-285. | MR | Zbl

[31] C. Voisin, Sur les groupes de Chow de certaines hypersurfaces, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 73-76. | MR | Zbl

[32] C. Voisin, Hodge theory and complex algebraic geometry. I and II, Cambridge Studies in Advanced Math. 76 and 77, Cambridge Univ. Press, 2002, 2003. | MR | Zbl

[33] C. Voisin, Coniveau 2 complete intersections and effective cones, Geom. Funct. Anal. 19 (2010), 1494-1513. | MR | Zbl

[34] C. Voisin, Lectures on the Hodge and Grothendieck-Hodge conjectures, Rend. Semin. Mat. Univ. Politec. Torino 69 (2011), 149-198. | MR | Zbl

Cité par Sources :