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THE GENERALIZED HODGE AND BLOCH
CONJECTURES ARE EQUIVALENT FOR GENERAL

COMPLETE INTERSECTIONS

ʙʏ Cʟ�ɪʀ� VOISIN

Aʙ��ʀ���. – We prove that Bloch’s conjecture is true for surfaces with pg = 0 obtained as 0-sets
Xσ of a section σ of a very ample vector bundle on a variety X with “trivial” Chow groups. We get a
similar result in presence of a finite group action, showing that if a projector of the group acts as 0 on
holomorphic 2-forms of Xσ, then it acts as 0 on 0-cycles of degree 0 of Xσ. In higher dimension, we
also prove a similar but conditional result showing that the generalized Hodge conjecture for general
Xσ implies the generalized Bloch conjecture for any smooth Xσ, assuming the Lefschetz standard
conjecture (the last hypothesis is not needed in dimension 3).

R�����. – Nous montrons la conjecture de Bloch pour les surfaces avec pg = 0 obtenues comme
lieux des zéros Xσ d’une section σ d’un fibré vectoriel très ample sur une variété X à groupes de Chow
« triviaux ». Nous obtenons un résultat similaire en présence d’une action d’un groupe fini, montrant
que si un projecteur du groupe agit comme 0 sur les 2-formes holomorphes de Xσ, il agit comme 0

sur les 0-cycles de degré 0 de Xσ. En dimension supérieure, nous obtenons un résultat similaire mais
conditionnel montrant que la conjecture de Hodge généralisée pour Xσ générale entraîne la conjecture
de Bloch généralisée pour tout Xσ lisse, en supposant satisfaite la conjecture de Lefschetz standard
(cette dernière hypothèse n’étant pas nécessaire en dimension 3).

1. Introduction

Recall first that a weight k Hodge structure (L, L
p,q

) has Hodge coniveau c ≤ k

2 if the
Hodge decomposition of LC takes the form

LC = L
k−c,c ⊕ L

k−c−1,c+1 ⊕ · · · ⊕ L
c,k−c

with L
k−c,c �= 0. If X is a smooth complex projective variety and Y ⊂ X is a closed algebraic

subset of codimension c, then Ker (H
k
(X, Q) → H

k
(X \Y, Q)) is a sub-Hodge structure of

coniveau ≥ c of H
k
(X, Q) (cf. [34, Theorem 7]). The generalized Hodge conjecture formu-

lated by Grothendieck [10] is the following.
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450 C. VOISIN

C�ɴ�����ʀ� 1.1. – Let X be as above and let L ⊂ H
k
(X, Q) be a sub-Hodge structure

of Hodge coniveau≥ c. Then L has geometric coniveau≥ c, i.e., there exists a closed algebraic

subset Y ⊂ X of codimension c such that

L ⊂ Ker (H
k
(X, Q) → H

k
(X \ Y, Q)).

This conjecture is widely open, even for general hypersurfaces or complete intersec-
tions in projective space (cf. [33]). Consider a smooth complete intersection X ⊂ Pn of r

hypersurfaces of degrees d1 ≤ · · · ≤ dr. Then the Hodge coniveau of the Hodge structure
on H

n−r
(X, Q)prim (the only part of the cohomology of X which does not come from the

ambient space) is given by the formula (cf. [33], where complete intersections of coniveau 2

are studied):

coniveau(H
n−r

(X, Q)prim) ≥ c ⇔ n ≥
�

i

di + (c− 1)dr.(1)

A deep relation between Chow groups and geometric coniveau appears in the various gen-
eralizations of Mumford’s theorem obtained in [3], [26], [16], [14], [22], based on refinements
of the diagonal decomposition principle due to Bloch and Srinivas. The resulting statement
is the following (see [32, II,10.3.2]):

Tʜ��ʀ�� 1.2. – Let X be a smooth projective variety of dimension m. Assume that the

cycle class map

cl : CHi(X)Q → H
2m−2i

(X, Q)

is injective for i ≤ c − 1. Then for any k ≥ 0, the geometric coniveau of the Hodge structure

H
k
(X, Q)

⊥alg
is greater than or equal to c.

Here H
k
(X, Q)

⊥alg denotes the “transcendental part” of the cohomology, that is, the set
of classes which are orthogonal to all cycle classes via Poincaré duality. It is of course different
from H

k
(X, Q) only if k is even.

This theorem could be a possible way to attack Conjecture 1.1 for the whole cohomology
of X, or at least its transcendental part. The first case of this theorem, that is the case where
c = 1, was obtained by Bloch-Srinivas [3]. It says that if a variety X has CH0(X) = Z, then
H

k,0
(X) = 0 for any k > 0 (which generalizes Mumford’s theorem [17]) and furthermore,

the cohomology of positive degree of X is supported on a proper algebraic subset Y ⊂ X

(which solves Conjecture 1.1 for such X and for coniveau 1).

The next major open problem, which by the above theorem would solve the generalized
Hodge conjecture, is the following conjecture relating the Hodge coniveau and Chow groups.
This conjecture is a vast generalization of Bloch conjecture for surfaces [2].

C�ɴ�����ʀ� 1.3 (cf. [32, II, 11.2.2]). – Let X be a smooth projective variety of dimen-

sion m satisfying the condition H
p,q

(X) = 0 for p �= q and p < c (or q < c). Then for any

integer i ≤ c− 1, the cycle class map

cl : CHi(X)Q → H
2m−2i

(X, Q)

is injective.
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GENERALIZED HODGE AND BLOCH CONJECTURES 451

Note that assuming the Hodge conjecture, the assumptions are equivalent to saying that
the cohomology H

∗
(X, Q)

⊥alg has Hodge coniveau ≥ c.
If we look at the case of hypersurfaces or complete intersections in projective space, we

see from (1) that Conjecture 1.3 predicts the following :

C�ɴ�����ʀ� 1.4. – Let X ⊂ Pn
be a smooth complete intersection of hypersurfaces of

degrees d1 ≤ · · · ≤ dr. Then if n ≥
�

i
di + (c− 1)dr, the cycle class map

cl : CHi(X)Q → H
2n−2r−2i

(X, Q)

is injective for any integer i ≤ c− 1.

Note that, by Theorem 1.2, this conjecture would imply Conjecture 1.1 for very general
complete intersections, that is, Conjecture 1.5 below. Indeed, by monodromy arguments, the
Hodge structure on the primitive middle cohomology of a very general complete intersection
is simple except for some rare and classified cases where it is made of Hodge classes. Thus in
this case a nontrivial sub-Hodge structure must be the whole primitive cohomology, and its
Hodge coniveau is computed by (1).

Apart from very particular values of the degrees di (like complete intersections of quadrics
[21], or cubics of small dimension [1]), Conjecture 1.4 is essentially known only in the case
c = 1, where the considered complete intersections are Fano, hence rationally connected, so
that the equality CH0(X) = Z is trivial in this case.

In the paper [31], it is proved that for any pair (n, d), there are smooth hypersurfaces of
degree d in Pn satisfying the conclusion of Conjecture 1.4.

Coming back to Conjecture 1.1 for general complete intersections in projective space, we
get from (1) that it is equivalent to the following statement:

C�ɴ�����ʀ� 1.5. – The primitive cohomology H
n−r

(X, Q)prim of a smooth complete

intersection X ⊂ Pn
of r hypersurfaces of degrees d1 ≤ · · · ≤ dr vanishes on the complement

of a closed algebraic subset Y ⊂ X of codimension c if n ≥
�

i
di + (c− 1)dr.

As already mentioned, Conjecture 1.5 would be implied by Conjecture 1.4 using Theo-
rem 1.2. The paper [33] is an attempt to prove directly Conjecture 1.5 for hypersurfaces or
complete intersections of coniveau 2 without trying to show the triviality of their CH0 and
CH1 groups. Conjecture 1.5 is shown there to be implied by a conjecture on the effective
cone of algebraic cycles (on some auxiliary variety). This work was motivated by the fact
that, apart from the case of coniveau 1, as is apparent from the lack of progress in this direc-
tion and the fact that the results obtained this way (see [7], [22], [20]) cover a numerical range
which is rather different from the one predicted by Conjecture 1.5, it seems now unlikely that
one will prove Conjecture 1.5 by an application of Theorem 1.2, that is via the proof of the
triviality of Chow groups of small dimension.

In fact, we will essentially show in this paper that for very general complete intersections
of ample hypersurfaces or more generally, zero sets of sections of very ample vector bundles
inside any smooth projective variety X with “trivial” Chow groups, Conjecture 1.1 (that is
Conjecture 1.5 if the ambient space is Pn) implies Conjecture 1.3 (that is Conjecture 1.4 if
the ambient space is Pn). Stated this way, this is not completely correct, and we have to add
an extra assumption that we now explain.
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452 C. VOISIN

Let us state the following conjecture, that we will relate later on (cf. Proposition 2.6) to the
so-called standard conjectures [13]:

C�ɴ�����ʀ� 1.6. – Let X be a smooth complex projective variety, and let Y ⊂ X be a

closed algebraic subset. Let Z ⊂ X be a codimension k algebraic cycle, and assume that the

cohomology class [Z] ∈ H
2k

(X, Q) vanishes in H
2k

(X\Y, Q). Then there exists a codimension

k cycle Z
�

on X with Q-coefficients, which is supported on Y and such that [Z
�
] = [Z]

in H
2k

(X, Q).

Our main result in this paper is the following theorem. We will say here that a smooth
variety X has trivial Chow groups if the cycle map cl : CH

i
(X)Q → H

2i
(X, Q) is injective

for any i. In the theorem below, we say that a vector bundle E on X is very ample if for any
subscheme z ⊂ X of length 2, the restriction map H

0
(X,E) → H

0
(z, E|z) is surjective.

Tʜ��ʀ�� 1.7. – Assume Conjecture 1.6 holds for cycles of codimension n− r. Let X be a

smooth complex projective n-fold with trivial Chow groups. Let E be a very ample vector bundle

on X of rank r. Assume that for a very general subvariety Xb ⊂ X defined as the zero locus

of a section of E, the Hodge structure on H
n−r

(Xb, Q)van is supported on a closed algebraic

subset Yb ⊂ Xb of codimension ≥ c. Then for the general such Xb (hence in fact for all), the

cycle map cl : CHi(Xb)Q → H
2n−2r−2i

(Xb, Q) is injective for any i < c.

Here the space H
n−r

(Xb, Q)van of vanishing cohomology is defined as

Ker (jb∗ : H
n−r

(Xb, Q) → H
n+r

(X, Q)),

where jb is the inclusion of Xb in X. If the ambient space X is Pn, the vanishing cohomology
is nothing but the primitive cohomology with respect to the line bundle OXb(1).

As a particular case, we get:

C�ʀ�ʟʟ�ʀʏ 1.8. – Assuming Conjecture 1.6 for cycles of codimension n− r, the general-

ized Hodge Conjecture 1.5 implies the generalized Bloch Conjecture 1.4 for complete intersec-

tions in projective space.

These results are conditional results. However, in small dimension, some assumptions are
automatically satisfied, and this gives us the following statement, which will be proved in
Subsection 3.3.

Tʜ��ʀ�� 1.9. – Let X be a smooth complex projective variety of dimension n with trivial

Chow groups. Let E be a very ample vector bundle of rank r on X. Then we have:

1) Case n − r = 2. If the smooth surfaces Xb obtained as zero sets of sections of E have

h
2,0

(Xb) = 0, then they satisfy CH0(Xb) = Z. (This is the Bloch conjecture).

2) Case n−r = 3. If very general threefolds Xb obtained as zero sets of sections of E have the

property that the degree 3 cohomology of Xb is of geometric coniveau 1 (which is also equivalent

to the fact that Abel-Jacobi map CH
2
(Xb)hom → J

3
(Xb) is surjective), then the Chow group

CH0(Xb) is equal to Z.
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The proof of Theorem 1.7 can be also applied to get results for many complete intersec-
tions or zero sets of sections of very ample vector bundles Xb endowed with the action of a
finite group G. In this case, the method applies as well to the χ-invariant part of CH(Xb)

where χ : G → {1,−1} is a character, and more generally to any projector π ∈ Q[G].

R���ʀ� 1.10. – As already mentioned, our results are unconditional in the case of sur-
faces or threefolds, where the needed assumptions will be satisfied by the Lefschetz theo-
rem on (1, 1)-classes. This is uninteresting in the case of complete intersections surfaces or
threefolds in projective space, since those of coniveau 1 are Fano, but in the presence of a
group action, there are interesting non trivial examples of group actions on complete inter-
section surfaces where this applies, in particular the Godeaux surfaces considered in [29], or
the three-dimensional examples with group actions considered in [29] or in [23].

Other potential applications concern self-products of Calabi-Yau hypersurfaces. It
was noticed in [30] that the generalized Bloch conjecture implies the following: Let X

be a n-dimensional smooth projective variety with H
i
(X, OX) = 0 for 0 < i < n and

H
n
(X, OX) = C (for example X could be a Calabi-Yau manifold). Then if n is even the

antisymmetric product z × z
� − z

� × z of two 0-cycles of X of degree 0 should be 0

in CH0(X ×X). If n is odd the symmetric product z × z
�
+ z

� × z of two 0-cycles of X of
degree 0 should be 0 in CH0(X × X). This comes from Conjecture 1.3, or rather its gen-
eralization to motives, and from the observation that the Hodge structure on

�2
H

n
(X, Q)

has Hodge coniveau ≥ 1 (see Lemma 4.6).

We will show in Section 4:

Tʜ��ʀ�� 1.11. – Assume Conjecture 1.6. Let X be a very general Calabi-Yau hypersur-

face in projective space Pn
. Then if the generalized Hodge conjecture is true for the coniveau 1

Hodge structure on
�2

H
n−1

(X, Q) (seen as a sub-Hodge structure of H
2n−2

(X×X, Q)), the

antisymmetric product z×z
�−z

�×z of two 0-cycles of X of degree 0 is equal to 0 in CH0(X×X)

for n − 1 even and the symmetric product z × z
�
+ z

� × z of two 0-cycles of X of degree 0 is

equal to 0 in CH0(X ×X) for n− 1 odd.

The paper is organized as follows: in Section 2, we will show that Conjecture 1.6 is implied
by the so-called Lefschetz standard conjecture. In Section 3, we will prove Theorem 1.7 and
Theorem 1.9. Section 4 will provide a number of other geometric applications. For example,
we will show how to recover the results of [29], or [23].

Thanks

I thank Manfred Lehn, Christoph Sorger and Burt Totaro for their help concerning
Lemma 4.12, and especially Manfred Lehn and Christoph Sorger for communicating the
text [15]. I thank the referee for useful suggestions, and in particular for an elegant argument
simplifying the proof of Proposition 2.6.
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454 C. VOISIN

2. Remarks on Conjecture 1.6

The aim of this section is to comment on Conjecture 1.6. The first observation to make is
the following:

L���� 2.1. – Conjecture 1.6 is satisfied by codimension k cycles Z on X whose cohomol-

ogy class vanishes away from a codimension k − 1 closed algebraic subset Y .

In particular, Conjecture 1.6 is satisfied by codimension 2 cycles.

Proof. – Indeed, if we have a codimension k cycle Z ⊂ X, whose cohomology class
[Z] ∈ H

2k
(X, Q) vanishes on the open set X \Y , where codimY ≥ k− 1, then we know (cf.

[34, Proposition 3]) that there are Hodge classes αi ∈ Hdg
2k−2ci(‹Yi, Q), such that

[Z] =

�

i

j̃i∗αi,

where j̃i : ‹Yi → X are desingularizations of the irreducible components Yi of Y , and
ci := codimYi.

As ci ≥ k − 1 for all i’s, the classes αi are cycle classes on ‹Yi by the Lefschetz theorem
on (1, 1)-classes, which concludes the proof.

We are now going to relate precisely Conjecture 1.6 to the famous “standard conjectures”
[13]. Let X be a smooth projective variety of dimension n. The Künneth decomposition
of H

∗
(X ×X, Q) gives:

H
m

(X ×X, Q) ∼=
�

p+q=m

H
p
(X, Q)⊗H

q
(X, Q).

Poincaré duality on X allows to rewrite this as

H
m

(X ×X, Q) ∼=
�

p+q=m

Hom (H
2n−p

(X, Q), H
q
(X, Q)).(2)

On the other hand, we have the following lemma (cf. [32, I, 11.3.3]):

L���� 2.2. – Let m = p + q be even. A cohomology class

α ∈ Hom (H
2n−p

(X, Q), H
q
(X, Q)) ⊂ H

m
(X ×X, Q)

is a Hodge class on X ×X if and only if it is a morphism of Hodge structures.

There are two kinds of particularly interesting Hodge classes on X × X obtained from
Lemma 2.2.

a) Let m = 2n and consider for each 0 ≤ q ≤ 2n the element IdHq(X,Q) which provides by
(2) and Lemma 2.2 a Hodge class δq of degree 2n on X. This class is called the q-th Künneth
component of the diagonal of X. The first standard conjecture (or Künneth’s conjecture, cf.
[13]) is the following:

C�ɴ�����ʀ� 2.3. – The classes δi are algebraic, that is, are classes of algebraic cycles

on X ×X with rational coefficients.
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b) Let L be an ample line bundle on X, and l := c1(L) ∈ H
2
(X, Q). For any integer

k ≤ n, the hard Lefschetz theorem [32, I, 6.2.3] says that the cup-product map

l
n−k∪ : H

k
(X, Q) → H

2n−k
(X, Q)

is an isomorphism. This is clearly an isomorphism of Hodge structures. Its inverse

(l
n−k∪)

−1
: H

2n−k
(X, Q) → H

k
(X, Q)

is also an isomorphism of Hodge structures, which by (2) and Lemma 2.2 provides a Hodge
class λn−k of degree 2k on X ×X. The second standard conjecture we will consider (this is
one form of Lefschetz’ conjecture, cf. [13]) is the following:

C�ɴ�����ʀ� 2.4. – The classes λi are algebraic, that is, are classes of algebraic cycles

on X ×X with rational coefficients.

R���ʀ� 2.5. – One could also ask whether there is a codimension n algebraic cycle Z

on X×X with rational coefficients such that the induced morphism [Z]∗ : H
2n−k

(X, Q) →
H

k
(X, Q) is equal to λk. However, if this weaker version is true for any k, the Künneth

decomposition is algebraic and then by taking the Künneth component of bidegree (k, k)

of Z, we get an affirmative answer to Conjecture 2.4.

Let us show the following

Pʀ����ɪ�ɪ�ɴ 2.6. – The Lefschetz conjecture for all smooth projective varieties X is

equivalent to the conjunction of the Künneth Conjecture 2.3 and of Conjecture 1.6 for all smooth

projective varieties X.

Proof. – Let us assume that the Künneth conjecture holds for X and Conjecture 1.6
holds for any pair Y ⊂ X

�. Let i < n. Consider the Künneth component δ2n−i of ∆X , so

δ2n−i ∈ H
i
(X, Q)⊗H

2n−i
(X, Q) is the class of an algebraic cycle Z on X×X. Let Yi

ji
�→ X

be a smooth complete intersection of n − i ample hypersurfaces in X. Then the Lefschetz
theorem on hyperplane sections (cf. [32, II, 1.2.2]) says that

ji∗ : H
i
(Yi, Q) → H

2n−i
(X, Q)

is surjective. It follows that the class of the cycle Z vanishes on X×(X\Yi). By Conjecture 1.6,
there is a n-cycle Z

� supported on X × Yi such that the class (id, j)∗[Z
�
] is equal to [Z].

Consider the morphism of Hodge structures induced by [Z
�
]:

[Z
�
]∗ : H

2n−i
(X, Q) → H

i
(Yi, Q).

Composing with the morphism ji∗ : H
i
(Yi, Q) → H

2n−i
(X, Q), we get ji∗ ◦ [Z

�
]∗ =

IdH2n−i(X,Q). It follows that [Z
�
]∗ is injective, and that its transpose [Z

�
]
∗

: H
i
(Yi, Q) →

H
i
(X, Q) is surjective. We now apply [4, Proposition 8] and induction on dimension to

conclude that Lefschetz’ conjecture holds for X.
Conversely, assume Lefschetz’ conjecture holds for any smooth projective variety. It obvi-

ously implies the Künneth conjecture. It is a well-known fact (cf. [13], [34, Theorem 4]) that
the Lefschetz standard conjecture for a smooth complex projective variety M implies that
numerical and homological equivalences coincide for cycles on M . Let us show, following a
suggestion of the referee simplifying our original proof, that the conclusion of Conjecture 1.6
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456 C. VOISIN

for X, Y, Z satisfying the given assumptions is already implied by the fact that homological
and numerical equivalences coincide for cycles on X and a desingularization ‹Y of Y . Set
n = dim X, k = codim Z, l = codim Y . Let j̃ : ‹Y → X be a desingularization of Y . It is
known (cf. [34, Proposition 3]) that there exists a class β ∈ H

2k−2l
(‹Y , Q) such that j̃∗β = [Z].

This class β gives by intersection a linear form η on the space H
2n−2k

(‹Y , Q)alg. If homologi-
cal and numerical equivalences coincide for cycles on ‹Y , there is a codimension k− l cycle Z

�

with Q-coefficients on Y , such that η is given by intersecting with the class of Z
�. The class

j∗[Z
�
] ∈ H

2k
(X, Q) has the property that for any codimension n− k cycle class γ on X,

< j∗[Z
�
], γ >X=< [Z

�
], j

∗
γ >�Y =< β, j

∗
γ >�Y =< j∗β, γ >X=< [Z], γ >X .

Thus, if homological and numerical equivalences coincide for cycles on X, we conclude that
[Z] = j∗[Z

�
].

The main use we will make of Conjecture 1.6 is the following strengthening of the gen-
eralized Hodge conjecture. Let X be a smooth complex projective variety of dimension n,
and let L be a sub-Hodge structure of H

n
(X, Q)prim, where the subscript “prim” stands for

“primitive with respect to a given polarization on X”. We know then by the second Hodge-
Riemann bilinear relations [32, I, 6.3.2] that the intersection form <, > restricted to L is non-
degenerate. Let πL : H

n
(X, Q) → L be the orthogonal projector on L. We assume that πL

is algebraic, that is, there is a n-cycle ∆L ⊂ X ×X, such that

[∆L]∗ = πL : H
n
(X, Q) → L ⊂ H

n
(X, Q),

[∆L]∗ = 0 : H
i
(X, Q) → H

i
(X, Q), i �= n.

L���� 2.7. – Assume that there exists a closed algebraic subset Y ⊂ X such that L

vanishes in H
n
(X \ Y, Q). Then if Conjecture 1.6 holds, there is a cycle Z

�
L
⊂ Y × Y with

Q-coefficients such that

[Z
�
L
] = [∆L] in H

2n
(X ×X, Q).

Proof. – Indeed, because πL is the orthogonal projector on L, the class [ZL] belongs
to L ⊗ L ⊂ H

2n
(X × X, Q). As L vanishes in H

n
(X \ Y, Q), the class [ZL] ∈ L ⊗ L

vanishes in H
2n

(X × X \ (Y × Y ), Q). Conjecture 1.6 then guarantees the existence of a
cycle Z

�
L
⊂ Y × Y such that [Z

�
L
] = [∆L] in H

2n
(X ×X, Q).

3. Proof of Theorem 1.7

3.1. Generalities on varieties with “trivial” Chow groups

We will say that a (non necessarily projective) smooth variety satisfies property P (or has
trivial Chow groups) if the cycle map

cl : CH
i
(X)Q → H

2i
(X, Q)

is injective for all i. We will say that X satisfies property Pk if the cycle class map

cl : CH
i
(X)Q → H

2i
(X, Q)
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is injective for all i ≤ k. When X is projective, it is known (cf. [14], [16]) that if X has trivial
Chow groups, the cycle class map

cl : CH
k
(X)Q → H

2k
(X, Q)

is an isomorphism for any k and that H
2k+1

(X, Q) = 0 for all k. We have the following
lemma:

L���� 3.1. – Assume Conjecture 1.6. Let X be a smooth algebraic variety satisfying

property P. Then any Zariski open set U ⊂ X satisfies property P.

Proof. – Write U = X \ Y . Let Z be a codimension k cycle on U with vanishing
cohomology class. Then Z is the restriction to U of a cycle Z on X, which has the property
that

[Z]|U = 0.

Conjecture 1.6 says that there is a cycle Z
� supported on Y such that [Z] = [Z

�
] in H

2k
(X, Q).

The cycle Z − Z
� is thus cohomologous to 0 on X. As X satisfies property P, Z − Z

� is
rationally equivalent to 0 on X modulo torsion, and so is its restriction to U , which is equal
to Z.

L���� 3.2. – Let X be a smooth complex variety satisfying property Pk. Then any

projective bundle p : P(E) → X, where E is a locally free sheaf on X, satisfies property Pk.

Proof. – Indeed, let h = c1( OP(E)(1)) ∈ CH
1
(P(E)) and let [h] ∈ H

2
(P(E), Q) be its

topological first Chern class. The canonical decompositions ([32, I,7.3.3], [32, II,9.3.2]

CH
∗
(P(E))Q = ⊕0≤i≤r−1h

i
p
∗
CH

∗−i
(X, Q),

H
∗
(P(E))Q = ⊕0≤i≤r−1[h]

i ∪ p
∗
H
∗−2i

(X, Q),

are compatible with the cycle map cl : CH
∗
(X) → H

2∗
(X, Q). Thus if cl is injective on cycles

of codimension ≤ k on X, it is also injective on cycles of codimension ≤ k on P(E).

We prove similarly

L���� 3.3. – Let X be a smooth complex algebraic variety satisfying property Pk and

let Y ⊂ X be a subvariety satisfying property Pk−1. Then the blow-up ‹XY → X of X along

Y satisfies property Pk.

Let us conclude with two more properties:

L���� 3.4. – Let φ : X → X
�

be a projective surjective morphism, where X and X
�

are

smooth complex algebraic varieties. If X satisfies property P, so does X
�
.

Proof. – Indeed, let h ∈ CH
1
(X) be the first Chern class of a relatively ample line bundle.

Let r = dim X − dim X
�, and let d be defined by φ∗h

r
= dX

� ∈ CH
0
(X

�
). Then we have

the projection formula:

φ∗(h
r · φ∗α) = dα, ∀α ∈ CH

∗
(X

�
)Q.(3)

If α ∈ CH
∗
(X

�
)Q satisfies cl(α) = 0 then φ

∗
(cl(α)) = cl(φ

∗
α) = 0 in H

2∗
(X, Q). Thus

φ
∗
α = 0 in CH

∗
(X)Q and α = 0 in CH(X

�
)Q by (3).
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Pʀ����ɪ�ɪ�ɴ 3.5. – Let X be a smooth projective variety satisfying property P. Then

X ×X satisfies property P.

Proof. – This uses the fact (proved e.g. in [22]) that a variety satisfying property P has
a complete decomposition of the diagonal as a combination of products of algebraic cycles
(cf. also [32, II,10.3.1]):

∆X =

�

i,j

nijZi × Zj in CH
n
(X ×X)Q,

where nij ∈ Q, and dim Zi + dim Zj = n = dim X. It follows that the variety Z := X ×X

also admits such decomposition, since ∆Z = p
∗
13∆X · p∗24∆X in CH

2n
(Z ×Z), where pij is

the projection of Z × Z = X
4 to the product X ×X of the i-th and j-th summand.

But this in turn implies that CH
∗
(Z)Q ∼= H

2∗
(Z, Q). Indeed, write

∆Z =

�

i,j

mijWi ×Wj in CH
2n

(Z × Z).

Then any cycle γ ∈ CH(Z)Q satisfies

γ = ∆Z∗γ =

�

i,j

mijdeg (γ · Wi)Wj in CH(Z)Q.

It immediately follows that if γ is homologous to 0, it vanishes in CH(Z)Q.

3.2. Proof of Theorem 1.7

We will start with a few preparatory lemmas. Consider a smooth projective variety X

of dimension n satisfying property P. Let L1, . . . , Lr be very ample line bundles on X.
Let j : Xb �→ X be a general complete intersection of members of | Li|. Then Xb is smooth
of dimension n− r, and we have an orthogonal decomposition

H
n−r

(Xb, Q) = H
n−r

(Xb, Q)van ⊕H
n−r

(X, Q)|Xb
,(4)

where the vanishing cohomology Lb := H
n−r

(Xb, Q)van is defined as

Ker (j∗ : H
n−r

(Xb, Q) → H
n+r

(X, Q)).

Note that H
n−r

(Xb, Q)van is contained in H
n−r

(Xb, Q)prim, where “prim” means primitive
for the polarization c1( L1)|Xb

, and thus, by the second Hodge-Riemann bilinear relations,
the intersection form <, > on H

n−1
(Xb, Q) remains nondegenerate after restriction to Lb.

Next the Lefschetz theorem on hyperplane sections says that the restriction maps
H

i
(X, Q) → H

i
(Xb, Q) are isomorphisms for i < n − r. Furthermore, the hard Lef-

schetz theorem applied to Xb says that denoting by h the restriction to Xb of the first Chern
class of an ample line bundle H on X, the cup-product map

h
k∪ : H

n−r−k
(Xb, Q) → H

n−r+k
(Xb, Q)

is surjective for any k ≥ 0. It follows that the restriction maps H
i
(X, Q) → H

i
(Xb, Q) are

also surjective for i > n− r.
All the above statements remain valid if instead of a complete intersection of very ample

hypersurfaces we consider the zero set Xb of a section of an ample vector bundle E. For
example, the Lefschetz theorem on hyperplane sections has to be replaced by Sommese’s
theorem [27] which applies to sections of ample vector bundles. As for the statement that
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the intersection form <, > on H
n−r

(Xb, Q) remains nondegenerate after restriction to
Lb = H

n−r
(Xb, Q)van, it is a consequence of the following construction of Terasoma (cf.

[28]). The section σb defining Xb defines as well an hypersurface Yb ⊂ P(E), which is a
member of the very ample linear system | OP(E)(1)|. There is a correspondence between Xb

and Yb which comes from the fact that Yb contains the projective bundle Y
�
b

:= P(E|Xb
).

Let jY
�

b
: Y

�
b
→ Yb be the inclusion, and πY

�
b

: Y
�
b
→ Xb be the structural map. Then we get

a map
jY

�
b ∗
◦ πY

�
b

: H
n−r

(Xb, Q) → H
n+r−2

(Yb, Q)

which sends H
n−r

(Xb, Q)van in H
n+r−2

(Yb, Q)van and preserves the cup-product up to sign.
The nondegeneracy of the cup-product restricted to H

n−r
(Xb, Q)van then follows from the

fact that the cup-product polarizes the Hodge structure on H
n+r−2

(Yb, Q)van.
As X has trivial Chow groups, we know by [16] that H

∗
(X, Q) is generated by classes of

algebraic cycles and so is the restriction H
∗
(X, Q)|Xb

, that is the orthogonal complement
of Lb in H

∗
(Xb, Q). This implies the following:

L���� 3.6. – The orthogonal projector πLb on Lb is algebraic.

Proof. – In fact, having chosen an ample line bundle H on X, we can construct a canoni-
cal algebraic cycle ∆b,van with Q-coefficients on Xb×Xb, whose class [∆b,van] is equal to πLb .
For this, we choose a basis of⊕i≤n−rH

2i
(X, Q). As we know that X has trivial Chow groups,

this basis consists of classes [zi,j ] of algebraic cycles zi,j on X, with codim zi,j = i ≤ n− r.
With the same notation h := c1(H|Xb

), we find that the classes h
n−r−2i ∪ [zi,j ]|Xb

, together
with the classes [zi,j ]|Xb

, form a basis of H
∗
(X, Q)|Xb

. These classes are the restrictions to Xb

of the canonically defined algebraic cycles H
n−r−2i · zi,j of X.

The intersection form on H
∗
(Xb, Q) is nondegenerate when restricted to H

∗
(X, Q)|Xb

,
and Lb is the orthogonal complement of H

∗
(X, Q)|Xb

with respect to the intersection pairing
on H

∗
(Xb, Q). We thus have the equality of orthogonal projectors:

πLb + πH∗(X,Q)|Xb
= IdH∗(Xb,Q).

But it is clear that the orthogonal projector πH∗(X,Q)|Xb
is given by the class of a canonical

algebraic cycle on Xb × Xb (it suffices to construct from the previous basis an orthogonal
basis (ei) of H

∗
(X, Q)|Xb

for the intersection form on H
∗
(Xb, Q). This allows to write

πH∗(X,Q)|Xb
as the element

�
i
λiei ⊗ ei of H

∗
(X, Q)|Xb

⊗H
∗
(X, Q)|Xb

⊂ EndH
∗
(Xb, Q)

and one concludes using the fact that the ei are by construction classes of canonically defined
algebraic cycles). As IdH∗(Xb,Q) corresponds to the class of the diagonal of Xb, the proof is
finished.

We now assume that there is a closed algebraic subset Yb ⊂ Xb of codimension c such
that Lb vanishes on Xb \ Yb. Then, under Conjecture 1.6, Lemma 2.7 tells that there is an
algebraic cycle Zb supported on Yb × Yb such that [Zb] = [∆b,van].

The key point now is the following Proposition 3.7. In the following, we will put everything
in family. Let π : X → B be a smooth projective morphism and let (π, π) : X ×B X → B be
the fibered self-product of X over B. Let Z ⊂ X ×B X be a codimension k algebraic cycle.
We denote the fibres X b := π

−1
(b), Zb := Z | Xb× Xb

.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



460 C. VOISIN

Pʀ����ɪ�ɪ�ɴ 3.7. – Assume that for a very general point b ∈ B, there exist a closed

algebraic subset Yb ⊂ X b × X b of codimension c, and an algebraic cycle Z
�
b
⊂ Yb × Yb with

Q-coefficients, such that

[Z
�
b
] = [ Zb] in H

2k
( X b × X b, Q).

Then there exist a closed algebraic subset Y ⊂ X of codimension c, and a codimension k

algebraic cycle Z � with Q-coefficients on X ×B X , which is supported on Y ×B Y and such

that for any b ∈ B,

[ Z �
b
] = [ Zb] in H

2k
( X b × X b, Q).

R���ʀ� 3.8. – This proposition is a crucial observation in the present paper. As we will
see later, the key point is the fact that we do not need to make any base change for this specific
problem, hence we will be able to use the fact that the total spaces X and X ×B X are rather
simple. The idea of spreading-out cycles has become very important in the theory of algebraic
cycles since Nori’s paper [19], (cf. [9], [25]). For most problems however, we usually need to
work over a generically finite extension of the base, due to the fact that cycles existing at the
general point will exist on the total space of the family only after a base change.

Proof of Proposition 3.7. – There are countably many algebraic varieties φi : Mi → B

parameterizing data (b, Yb, Z
�
b
) as above, and we can assume that each Mi parameterizes

universal objects

Y
i
→ Mi, Y

i
⊂ XMi , Z �

i
⊂ Y

i
×Mi Y

i
,(5)

satisfying the property that for m ∈ Mi, with pr1(m) = b ∈ B,

[ Z �
i,b

] = [ Z i,b] in H
2k

( X b × X b, Q).

By assumption, B is the union of the images of the morphisms φi : Mi → B. By a
Baire category argument, we conclude that one of the morphisms φi is dominating. Taking a
subvariety of Mi if necessary, we may assume that φi : Mi → B is generically finite. We may
also assume that it is proper and carries the families Y

i
→ Mi, Y

i
⊂ XMi , Z �

i
⊂ Y

i
×Mi Y

i
.

Denote by ri : XMi → X the proper generically finite morphism induced by φi. Let

Y := ri(Y
i
) ⊂ X .

Note that because ri is generically finite, codim Y ≤ c. Let r
�
i

: Y
i
→ Y be the restriction

of ri to Y
i
. and let Z � := (r

�
i
, r
�
i
)∗( Z �

i
), which is a codimension k cycle in X ×B X supported

in
(r
�
i
, r
�
i
)(Y

i
×Mi Y

i
) ⊂ Y ×B Y.

It is obvious that for any b ∈ B, [ Z �
b
] = N [ Zb] in H

2k
( X b× X b, Q), where N is the degree

of ri.

In the application, X and B will be as in the following :

N����ɪ�ɴ 3.9. – Let X be a smooth projective variety with trivial Chow groups and E

be a very ample vector bundle on X of rank r. Let P := P(H
0
(X,E)). Let B ⊂ P be the

open set of sections whose zero set is smooth of codimension r, and let

X ⊂ B ×X, π : X → B,

be the universal family. We will denote Xb ⊂ X the fibre π
−1

(b) for b ∈ B.
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We apply the previous proposition to Z = Dvan, the corrected relative diagonal with fibre
over b ∈ B the ∆b,van introduced in Lemma 3.6. (Note that Dvan is not in fact canonically
determined by its restrictions to the fibers Xb ×Xb, as it may be modified by adding cycles
which are restrictions to X ×B X of cycles in CH

>0
(B)⊗CH(X×X) ⊂ CH(B×X×X).)

We then get the following :

L���� 3.10. – Assume that for a general point b ∈ B, there is a codimension c closed

algebraic subset Yb ⊂ Xb such that H
n−r

(Xb, Q)van vanishes on Xb \ Yb. If furthermore

Conjecture 1.6 holds, there exist a closed algebraic subset Y ⊂ X of codimension c, and

a codimension n − r algebraic cycle Z � on X ×B X with Q-coefficients, which is supported

on Y ×B Y and such that for any b ∈ B,

[ Z �
b
] = [∆b,van] in H

2n−2r
(Xb ×Xb, Q).

Proof. – This is a direct application of Proposition 3.7, because we know from Lem-
mas 2.7 and 3.6 that under Conjecture 1.6, the assumption implies that there exists for any
b ∈ B an algebraic cycle Z

�
b
⊂ Yb×Yb such that [Z

�
b
] = [∆b,van] in H

2n−2r
(Xb×Xb, Q).

We have next the following :

L���� 3.11. – With notation as in 3.9, let α ∈ H
2n−2r

( X ×B X , Q) be a cohomology

class whose restriction to the fibres Xb ×Xb is 0. Then we can write

α = α1 + α2

where α1 is the restriction to X×B X of a class β1 ∈ H
2n−2r

(X× X , Q), and α2 is the restriction

to X ×B X of a class β2 ∈ H
2n−2r

( X ×X, Q).

More precisely we can take β1 ∈ ⊕i<n−rH
i
(X, Q) ⊗ L

1
H

2n−2r−i
( X , Q), and

β2 ∈ ⊕i<n−rL
1
H

2n−2r−i
( X , Q) ⊗ H

i
(X, Q), where L stands for the Leray filtration

on H
∗
( X , Q) with respect to the morphism π : X → B.

Proof. – Consider the smooth proper morphism

(π, π) : X ×B X → B.

The relative Künneth decomposition gives

R
k
(π, π)∗Q =

�

i+j=k

H
i

Q ⊗H
j

Q,

where H
i

Q := R
i
π∗Q. The Leray spectral sequence of (π, π), which degenerates at E2 (cf. [6]),

gives the Leray filtration L on H
2n−2r

( X ×B X , Q) with graded pieces

Gr
l

L
H

2n−2r
( X ×B X , Q) = H

l
(B,R

2n−2r−l
(π, π)∗Q) =

�

i+j=2n−2r−l

H
l
(B,H

i

Q ⊗H
j

Q).

Our assumption on α exactly says that it vanishes in the first quotient H
0
(B,R

2n−2r
(π, π)∗Q),

or equivalently, α ∈ L
1
H

2n−2r
( X ×B X , Q). Consider now the other graded pieces

H
l
(B,H

i

Q ⊗H
j

Q), l > 0, i + j = 2n− 2r − l.

Since l > 0, and i + j = 2n − 2r − l, we have either i < n − r or j < n − r.
Let us consider the case where i < n − r: then the Lefschetz hyperplane section the-
orem tells that the sheaf H

i

Q is the constant sheaf with stalk H
i
(X, Q). Thus we find that
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H
l
(B,H

i

Q ⊗H
j

Q) = H
i
(X, Q)⊗H

l
(B,H

j

Q), which is a Leray graded piece of
H

i
(X, Q) ⊗ H

l+j
( X). Analyzing similarly the case where j < n − r, we conclude that

the natural map
�

i<n−r

H
i
(X, Q)⊗ L

1
H

2n−2r−i
( X , Q)⊕

�

j<n−r

L
1
H

2n−2r−j
( X , Q)⊗H

j
(X, Q)

→ L
1
H

2n−2r
( X ×B X , Q)

is surjective. This proves the existence of the classes β1, β2.

In the case where X has trivial Chow groups, we get extra information:

L���� 3.12. – With the same notations as above, assume that X has trivial Chow groups

and that α is the class of an algebraic cycle on X×B X . Then, up to shrinking B to a dense Zariski

open set, we can choose the βi’s to be the restriction of classes of algebraic cycles on B×X×X.

Proof. – We first claim that it suffices to show that, up to shrinking B if necessary, we can
choose β1, resp. β2 to be the class of an algebraic cycle on X × X , resp on X ×X. Indeed,
X is a Zariski open set in P�, where P� ⊂ P×X is defined as follows :

P� := {(σ, x), σ(x) = 0}.

Via the second projection, P� is a projective bundle over X with fiber over x the codimension r

subspace P�
x
⊂ P of sections vanishing at x, because we assumed E is globally generated.

It follows that X × X is as well a Zariski open set in the corresponding fibration
X × P� → X ×X into projective spaces. The restriction map

CH(X ×X × P) → CH(X × P�)

is then surjective, by the computation of the Chow groups of a projective bundle fibration
([32, II,9.3.2]) and thus, composing with the restriction to the Zariski open set X× X , we get
that the restriction map

CH(X ×X × P) → CH(X × X)

is also surjective. It follows that the restriction map CH(X×X×B) → CH(X× X) is also
surjective, so that if we can choose β1 to be algebraic on X × X , then it lifts to an algebraic
cycle class on X ×X ×B. We argue similarly for β2.

We know that the cohomology of X is generated by classes of algebraic cycles
[zi,j ] ∈ H

2i
(X, Q). Let us choose a basis of H

∗<n−r
(X, Q) consisting of cycle classes

[zi,j ], 2i < n − r. Then we can choose cycle classes [zi,j ]
∗ ∈ H

2n−2r−2i
(X, Q) in such a

way that the restricted classes [zi,j ]
∗
|Xb

form the dual basis of H
∗>n−r

(Xb, Q). For i = 1, 2,
denote by pi,X : X ×B X → X the composition of the inclusion X ×B X �→ B × X × X

and the projection to the i-th X-summand.
Observe that for every i such that 2i < n− r, the cycle classes

�

j

p
∗
1,X

[zi,j ] ∪ p
∗
2,X

[zi,j ]
∗ ∈ H

2n−2r
( X ×B X , Q)

seen as cohomological relative self-correspondences of X over B, provide (maybe up to
shrinking B) projectors

π2i : Rπ∗Q → Rπ∗Q
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which act as the identity on the cohomology R
2i

π∗Q, for 2i < n − r. Similarly the cycle
classes �

j

p
∗
1,X

[zi,j ]
∗ ∪ p

∗
2,X

[zi,j ] ∈ H
2n−2r

( X ×B X , Q)

give projectors π2n−2r−2i of Rπ∗Q acting as the identity on R
2n−2r−2i

π∗Q for 2i < n − r.
Furthermore, these projectors satisfy the condition that πk ◦ πl = πl ◦ πk = 0 for k �= l. It
follows that denoting

πn−r := Id−
�

2i<n−r

π2i −
�

2i<n−r

π2n−2r−2i

we get a decomposition in the derived category of B:

Rπ∗Q ∼= ⊕iR
i
π∗Q[−i],(6)

which in turn induces a similar decomposition by the relative Künneth decomposition :

R(π, π)∗Q ∼= ⊕iR
i
(π, π)∗Q[−i] = ⊕p+q=i(R

p
π∗Q⊗R

q
π∗Q)[−i].(7)

Taking cohomology on both sides, we get a decomposition

H
k
( X ×B X , Q) ∼= ⊕i+p+q=kH

i
(B,R

p
π∗Q⊗R

q
π∗Q).(8)

This is nothing but an explicit form of the Deligne decomposition already mentioned, except
that it is clear now that the projector to each summand is induced by an algebraic relative
self-correspondence of X ×B X , hence sends a cycle class to a cycle class.

Applying (8) to our class α and recalling that α belongs to L
1
H
∗
( X ×B X , Q), we get that

α =

�

i>0,i+p+q=2n−2r

αi,p,q,(9)

with αi,p,q ∈ H
i
(B,R

p
π∗Q⊗R

q
π∗Q) being a cycle class on X×B X . It now suffices to show

that each αi,p,q lifts to a cycle class either on X × X or on X ×X.
We have i+p+q = 2n−2r with i > 0 so either p < n−r or q < n−r. Assume p < n−r;

then p has to be even, p = 2m. The sheaf R
2m

π∗Q is trivial, with basis given by the pull-back
to X of the classes [z2m,j ]. We can thus write

αi,2m,2n−2r−2m−i =

�

i>0,j

p
∗
1,X

[z2m,j ] ∪ pr
∗
2γi,2m,j ,(10)

where γi,2m,j ∈ H
i
(B,R

2n−2r−2m−i
π∗Q) is a cohomology class on X . Here

π
�
2 : X ×B X → X is the second projection

The class αi,2m,2n−2r−2m−i being algebraic, so is the class π
�
2∗(p

∗
1,X

[z2m,j ]
∗ ∪ αi,2m,2n−2r−2m−i)

for any j. However, we have the equality

γi,2m,j = π
�
2∗(p

∗
1,X

[z2m,j ]
∗ ∪ αi,2m,2n−2r−2m−i),(11)

which follows from (10), from the projection formula and from the fact that

π
�
2∗(p

∗
1,X

[z2m,j ]
∗ ∪ p

∗
1,X

[z2m,k]) = 0 in H
0
( X , Q) for j �= k,

π
�
2∗(p

∗
1,X

[z2m,j ]
∗ ∪ p

∗
1,X

[z2m,k]) = 1 in H
0
( X , Q) for j = k.

Formula (11) obviously implies that the γi,2m,j ’s are algebraic, hence that αi,2m,2n−2r−2m−i

is algebraic by (10).
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Proof of Theorem 1.7. – We keep notation (3.9) and assume now that the vanishing coho-
mology H

n−r
(Xb, Q)van is supported on a codimension c closed algebraic subset Yb ⊂ Xb

for any b ∈ B. Consider the corrected (or vanishing) diagonal Dvan, which is a codimension
n− r cycle of X ×B X with Q-coefficients.

By Lemma 3.10, it follows that there exist a codimension c closed algebraic subset Y ⊂ X
and a codimension n−r cycle Z on X×B X with Q-coefficients, which is supported on Y×B Y
and such that

[ Zb] = [Dvan,b] = [∆b,van], ∀b ∈ B.

Thus the class [ Z ]− [∆b,van] ∈ H
2n−2r

( X ×B X , Q) vanishes on the fibers Xb ×Xb.
Using Lemmas 3.11 and 3.12, we conclude that there is a cycle Γ ∈ CH

n−r
(B×X×X)Q

such that

[ Z ] = [Dvan] + [Γ| X×B X ] in H
2n−2r

( X ×B X , Q).(12)

Pʀ����ɪ�ɪ�ɴ 3.13. – If X has trivial Chow groups and Conjecture 1.6 holds, the cycle class

map

CH
∗
( X ×B X)Q → H

2∗
( X ×B X , Q)

is injective.

Proof. – Consider the blow-up ·X ×X of X ×X along the diagonal. Applying Proposi-
tion 3.5 and Lemma 3.3, ·X ×X has trivial Chow groups. A point of ·X ×X parameterizes
a couple (x, y) of points of X, together with a subscheme z of length 2 of X, with associated
cycle x + y. We thus have the following natural variety

Q = {(σ, x, y, z), σ ∈ P, σ|z) = 0 in H
0
(E|z)} ⊂ P×·X ×X.

As E is assumed to be very ample, the map Q → ·X ×X is a fibration with fibre over
(x, y, z) ∈ ·X ×X a projective space Pz of codimension 2r in P. By Lemma 3.2, Q also has
trivial Chow groups. Let Q0 ⊂ Q be the inverse image of B under the projection Q → P.
Then Q0 is Zariski open in Q, so by Lemma 3.1, the cycle class map is also injective on cycles
of Q0 since we assume Conjecture 1.6. Finally, Q0 maps naturally to X ×B X via the map

�

i

Pi ×·X ×X →
�

i

Pi ×X ×X.

The morphism Q0 → X ×B X being projective and dominant, we conclude by Lemma 3.4
that the cycle class map is injective on cycles of X ×B X .

The proof is then finished as follows. From the equality (12) of cohomology classes, we
deduce by Proposition 3.13 the following equality of cycles:

Z = Dvan + Γ| X×B X in CH
n−r

( X ×B X)Q.(13)

We now fix b and restrict this equality to Xb ×Xb. Then we find

Zb = ∆b,van + Γ
�
|Xb×Xb

in CH
n−r

(Xb ×Xb)Q,

where Γ
� ∈ CH(X ×X)Q is the restriction of Γ to b×X ×X.

Recalling that ∆b,van = ∆Xb + Γ
��
|Xb×Xb

for some codimension n − r-cycle Γ
�� with

Q-coefficients on X ×X, we conclude that

∆Xb = Zb + Γ1|Xb×Xb
,(14)
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where Γ1 ∈ CH
n−r

(X ×X, Q) and the cycle Zb is by construction supported on Y
b
× Y

b
,

with Y
b
⊂ Xb of codimension ≥ c for general b.

Let z ∈ CHi(Xb)Q, with i < c. Then ( Zb)∗z = 0 since we may find a cycle rationally
equivalent to z in Xb and disjoint from Y

b
. Applying both sides of (14) to z thus gives :

z = (Γ1|Xb×Xb
)∗z in CHi(Xb)Q.

But it is obvious that
(Γ1|Xb×Xb

)∗ : CH(Xb)Q → CH(Xb)Q

factors through jb∗ : CH(Xb)Q → CH(X)Q. Now, if z is homologous to 0 on Xb, jb∗(z)

is homologous to 0 on X, and thus it is rationally equivalent to 0 on X because X has
trivial Chow groups. Hence we proved that the cycle map with Q-coefficients is injective
on CHi(Xb)Q for i < c, which concludes the proof of the theorem for general b. In fact (14)
is true for any b ∈ B by specialization (but a blow-up of B might be necessary in order to
exhibit a Yb of codimension ≥ c), and thus the theorem is true as well for any b ∈ B.

3.3. The surface and threefold cases

We prove in this section the following theorem (Theorem 1.9 of the introduction) saying
that in the surface (resp. threefold) case, the results become unconditional (resp. do not use
Conjecture 1.6).

Tʜ��ʀ�� 3.14. – Let X be a smooth complex projective variety of dimension n with trivial

Chow groups. Let E be a very ample vector bundle of rank r on X. Then we have:

1) Case n − r = 2. If the smooth surfaces Xb ⊂ X obtained as zero loci of sections of E

have h
2,0

(Xb) = 0, then they satisfy CH0(Xb) = Z.

2) Case n − r = 3. If the degree 3 cohomology of the threefolds Xb ⊂ X is of geometric

coniveau 1 (which is also equivalent to the fact that Abel-Jacobi map CH
2
(Xb)hom → J

3
(Xb)

is surjective) for very general Xb, then the Chow group CH0(Xb) is equal to Z.

Proof. – 1) Indeed, the assumption h
2,0

(Xb) = 0 implies by the Lefschetz theorem
on (1, 1)-classes that the Hodge structure on H

2
(Xb, Q) is generated by divisor classes.

So, the generalized Hodge conjecture is true in this case. Furthermore, the case of the
Conjecture 1.6 we need for the proof of Theorem 1.7 will be satisfied in this case, because
it is satisfied by codimension 2 cycles (cf. Lemma 2.1). Finally, CH0(Xb)Q = Q implies
CH0(Xb) = Z by Roitman’s theorem [24].

2) We have to explain why Conjecture 1.6 will be also satisfied in this case. In fact, we use
this conjecture for the proof of Theorem 1.7 in two places. First of all, we need it in the proof
of Lemma 2.7, which says that if a certain Hodge structure Lb ⊂ H

∗
(Xb, Q) is supported on

a codimension c closed algebraic subset Yb, the corresponding projector has a class which
comes from the class of a cycle supported in Yb × Yb. This will be satisfied if dim Xb = 3,
Lb ⊂ H

3
(Xb, Q) supported on Yb×Yb because we know that the degree 6 Hodge class of the

projector πL is supported on the codimension 2 closed algebraic subset Yb × Yb (or rather a
desingularization of it), so that we can apply Lemma 2.1.

The second place is in the proof of Proposition 3.13 because we use there Lemma 3.1,
which is itself heavily based on Conjecture 1.6. However, we can also avoid the use of
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Conjecture 1.6 at this place, for the following reason. In the proof of Proposition 3.13, we
arrived at the conclusion that the blow-up of X ×B X along the diagonal is a Zariski open
set of a fibration Q → ·X ×X into projective spaces over the blow-up of X × X along
the diagonal. The complementary closed algebraic subset Q

� ⊂ Q is the blow-up along the
diagonal of the fibered self-product X �×B� X �, where B

� ⊂ P(H
0
(X,E)) is the complement

of the Zariski open set B, and X � → B
� is the restriction to B

� of the universal family over
P(H

0
(X,E)).

We have a certain degree 6 cycle class [Z] on Q which vanishes on Q \ Q
�, and we need to

find a cycle Z
� supported on Q

� such that [Z] = [Z
�
] in H

6
(Q, Q). As already mentioned (cf.

[34, Proposition 3]), this implies that there is a degree 4 Hodge class β on a desingularization
‹Q� of Q

� such that j̃∗β = [Z] in H
6
(Q, Q), where j̃ : ‹Q� → Q is the natural morphism. (Here

we assume Q
� ⊂ Q is of pure codimension 1.) Hence, to conclude, we just need to show that

the Hodge conjecture is true for degree 4 Hodge classes on ‹Q�. As we do not have a good
control of B

� (because in the proof of Lemma 3.12, we needed to shrink B), Q
� may have

several irreducible components Q
�
0, Q

�
1, . . . , Q

�
N

, where the Q
�
i
, i ≥ 1 are supported over

irreducible components B
�
i

of B
� whose generic point parameterizes a smooth subvariety

Xb ⊂ X of codimension r, while Q
�
0 is the irreducible component supported over the locus

B
�
0 ⊂ B parameterizing singular Xb ⊂ X. In fact, the case of ‹Q�

0 is not really different from
the other ones, because the generic point of B

�
0 parameterizes a local complete intersection

with one node. In fact, for the desingularization ‹Xb of the generic fiber over b ∈ B
�
0, we

still have the property that the degree 3 cohomology H
3
(‹Xb, Q) is of geometric coniveau

≥ 1, and that the rest of the cohomology is generated by classes of algebraic cycles. Thus the
argument below will apply as well to Q

�
0 → B

�
0. Next what happens over a proper Zariski

closed subset B
��
i

of B
�
i
’s needs not to be understood because the classes supported there will

come from degree≤ 2 on the desingularizations of the corresponding Q
��
i

, and we can apply
the Lefschetz theorem on (1, 1)-classes. By this argument, we can restrict to the smooth locus
of B

�
i
, and then Q

�
i

is also smooth.
We look at the Leray spectral sequence for πi : Q

�
i
→ B

�
i
. This fibration has for fiber the

blow-up of ‚Xb ×Xb of Xb × Xb over the diagonal. The Leray graded pieces of H
4
(Q

�
i
, Q)

are

H
0
(B

�
i
, R

4
πi∗Q), H

1
(B

�
i
, R

3
πi∗Q), H

2
(B

�
i
, R

2
πi∗Q), H

3
(B

�
i
, R

1
πi∗Q), H

4
(B

�
i
, R

0
πi∗Q).

The term H
3
(B

�
i
, R

1
πi∗Q) vanishes since R

1
πi∗Q = 0 by the Lefschetz theorem on hyper-

plane sections. The Hodge classes in H
2
(B

�
i
, R

2
πi∗Q) are products of Hodge classes of

degree 2 on B
�
i

and Hodge classes of degree 2 on fibers, since R
2
πi∗Q is a constant local

system generated by Hodge classes, again by the Lefschetz theorem on hyperplane sections
or its Sommese version for vector bundles. Similarly for the term H

0
(B

�
i
, R

4
πi∗Q).

It remains to consider H
1
(B

�
i
, R

3
πi∗Q) and H

4
(B

�
i
, R

0
πi∗Q). The Hodge classes in the

first term satisfy the Hodge conjecture because we assumed that the fibers of the restricted
families X �

i
→ B

�
i

have their degree 3 cohomology of geometric coniveau ≥ 1. It follows
that these classes are supported on some hypersurfaces Q

��
i

of Q
�
i
, hence satisfy the Hodge

conjecture by Lefschetz theorem on (1, 1)-classes applied to a desingularization of Q
��
i

.
We are left with the last term H

4
(B

�
i
, R

0
πi∗Q). Obviously we cannot say anything about

it, but its image in H
6
(Q, Q) belongs to the subspace H

6
(P(H

0
(X,E)), Q) ⊂ H

6
(Q, Q). We
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are thus reduced to prove that for W = P(H
0
(X,E)), for any codimension 3 cycle Z on W ,

and for any Zariski open set U = W \ ∪iB
�
i

such that [Z]|U = 0 in H
6
(U, Q), there is a

Q-cycle Z
� supported on ∪iB

�
i

such that [Z
�
] = [Z] in H

6
(W, Q), which is quite easy.

4. Variants and further applications

4.1. Complete intersections with group action

Theorem 1.7 applies to general complete intersections in projective space, the relation
(1) giving the Hodge coniveau (hence conjecturally the geometric coniveau c). There are
interesting variants coming from the study of complete intersections Xb of r hypersurfaces
in projective space Pn, or in a product of projective spaces, admitting a finite group action. In
most cases, the group G acts on the ambient space, and the ideal of Xb is globally invariant
under G. Assuming G acts on Xb, let χ : G → Z/2Z = {1,−1} be a character of G. Then
consider the sub-Hodge structure

L
χ

= {α ∈ H
n−r

(Xb, Q)prim, g
∗
α = χ(g)α, ∀g ∈ G} ⊂ H

n−r
(Xb, Q)prim.

In general, it has a larger coniveau than Xb. For example if Xb is a quintic surface in P3,
defined by an invariant polynomial under the linearized group action of G ∼= Z/5Z with
generator g on P3 given by

g
∗
Xi = ζ

i
Xi, i = 0, . . . , 3,

where ζ is a nontrivial 5-th root of unity, then H
2
(S, Q)

inv has no (2, 0)-part, hence is of
coniveau 1, while H

2,0
(S) �= 0 so the coniveau of H

2
(S, Q)prim is 0. The quotient surface

S/G is a quintic Godeaux surface (cf. [29]).
Note that the Hodge structure L

χ corresponds to the projector 1
|G|

�
g∈G

χ(g)g
∗ acting

on L, and it is given by the action of the n− r-cycle

Γχ :=

�

g∈G

χ(g)∆b,van,g,

where ∆b,van,g = (Id, g)∗(∆b,van) ∈ CHn−r(Xb × Xb)Q. The generalized Bloch Conjec-
ture 1.3 (extended to motives) predicts the following :

C�ɴ�����ʀ� 4.1. – Assume L
χ

has coniveau ≥ c. Then the cycle class map is injective

on CHi(Xb)
χ

Q for i < c.

If χ is the trivial character, this conjecture is essentially equivalent to the previous one
by considering X/G or a desingularization of it. Even in this case, one needs to make
assumptions on the linearized group action in order to apply the same strategy as in the proof
of Theorem 1.7. The case of non trivial character cannot be reduced to the previous case.

In order to apply a strategy similar to the one applied for the proof of Theorem 1.7, we
need some assumptions. Indeed, if the group G is too big, like the automorphisms group of
the Fermat hypersurface, there are too few invariant complete intersections to play on the
geometry of the universal family X → B of G-invariant complete intersections.

In any case, what we get mimicking the proof of Theorem 1.7 is the following: X is as
before a smooth projective variety of dimension n satisfying property P and G is a finite
group acting on X. We study complete intersections Xb ⊂ X of r G-invariant ample
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hypersurfaces Xi ∈ |Li|G : Let G act via the character χi on the considered component
of |Li|G. The basis B parameterizing such complete intersections is thus a Zariski open set
in

�
i
P(H

0
(X,Li)

χi). As before we denote by X → B the universal complete intersection.

Tʜ��ʀ�� 4.2. – Assume

(i) The variety X ×B X satisfies property Pn−r.

(ii) The Hodge structure on H
n−r

(Xb, Q)
χ

van is supported on a closed algebraic subset

Yb ⊂ Xb of codimension c. (Conjecturally, this is satisfied if the Hodge coniveau of H
n−r

(Xb, Q)
χ

van

is ≥ c, cf. Conjecture 1.1.)

(iii) Conjecture 1.6 holds for codimension n− r cycles.

Then the cycle map CHi(Xb)
χ

Q → H
2n−2r−2i

(Xb, Q)
χ

is injective for any b ∈ B.

R���ʀ� 4.3. – In the case where Xb are surfaces with h
2,0

(Xb)
χ

= 0, the assumption
(ii) is automatically satisfied, by the same arguments as in the proof of Theorem 1.9. We thus
get an alternative proof of the main theorem of [29], where the Bloch conjecture is proved
for the general Godeaux surfaces (quotients of quintic surfaces by a free action of Z/5Z, or
quotients of complete intersections of four quadrics in P6 by a free action of Z/8Z).

In the case of threefolds Xb of Hodge coniveau 1, we can also conclude, using the obvi-
ous extension of Theorem 1.9 to the case of varieties with group action, that CH0(Xb)

χ

0 = 0

if (i) is satisfied and the generalized Hodge conjecture is satisfied by the coniveau 1 Hodge
structure on H

3
(Xb, Q)

χ. This way the second result of [29] (quintic hypersurfaces with invo-
lutions) and the main application of [23] (3-dimensional complete intersection in weighted
projective space) are reproved : in both cases we are essentially reduced to prove the general-
ized Hodge conjecture for the coniveau 1 Hodge structure on their cohomology of degree 3.

E����ʟ� 4.4. – Consider a Calabi-Yau hypersurface Xf in X = Pn defined by an
equation f invariant by the involution i : i

∗
(X0, . . . ,Xn) = (−X0,−X1, X2, . . . ,Xn).

Then H
n−1

(X)
−
prim has coniveau 1, since i acts by Id on H

n−1,0
(Xf ). In [29], the case

of 2-dimensional quartics and 3-dimensional quintics are studied, and it is proved there that
i acts by Id on CH0(X) in both cases. One step in the 3-dimensional situation is the proof
that the generalized Hodge conjecture holds for the coniveau 1 Hodge structure H

3
(X, Q)

−.
Having this, Theorem 4.2 gives a drastically simplified proof of this result.

E����ʟ� 4.5. – The following class of examples is constructed in [5]: X = P1 × P3,
with the following group action: G = Z/5Z acts on P1 × P3 in the following linearized way:
Let g be a generator of G and ζ a nontrivial 5-th root of unity. Then if x, y are homogeneous
coordinates on P1 and x0, x1, x2, x3 are homogeneous coordinates on P3, we set:

g
∗
x = x, g

∗
y = ζy,

g
∗
xi = ζ

i
xi, i = 0, . . . , 3.

We then consider hypersurfaces Xf ⊂ P1 × P3 defined by an equation f = 0 of bidegree
(3, 4), where f ∈ H

0
(P1 × P3

, OP1×P3(3, 4))
G.

These hypersurfaces Xf have a few ordinary quadratic singularities. The varieties X
�
f

obtained as a desingularization of Xf/G have h
3,0

(X
�
f
) = 0 (and also h

i,0
(X

�
f
) = 0

for i = 1, 2). For the general such variety, Theorem 4.2 tells that the generalized Hodge
conjecture for H

3
(X

�
f
, Q) implies (and in fact is equivalent to by Theorem 1.2) the equality
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CH0(X
�
f
) = Z. The interest in these examples comes from the fact, proved in [5], that the

Hodge conjecture is not satisfied by integral Hodge classes of degree 4 on X
�
f

.

4.2. Self-products

Let Y be a smooth projective variety. We will assume for simplicity that H
i,0

(Y ) = 0

for i �= 0, m := dim Y . (This will be the case if Y is a complete intersection of ample
hypersurfaces in a projective variety with trivial Chow groups.)

L���� 4.6. – For k > pg(Y ) = h
m,0

(Y ), the Hodge structure of weight km on�
k
H

m
(Y, Q) has coniveau ≥ 1. In particular, if h

m,0
(Y ) = 1, the Hodge structure of

weight 2m on
�2

H
m

(Y, Q) has Hodge coniveau ≥ 1.

Proof. – Indeed, the (km, 0)-piece of the Hodge structure on
�

k
H

m
(Y, Q) is equal

to
�

k
H

m,0
(Y ), hence it is 0 for k > h

m,0
(Y ).

Conjecture 1.3 (or rather its generalization to motives) predicts the following (see below
for more details):

C�ɴ�����ʀ� 4.7. – Assume Y satisfies the above assumption and has h
m,0

= 1. Then, for

any z, z
� ∈ CH0(Y ) with deg z = deg z

�
= 0, one has z × z

� − z
� × z = 0 in CH0(Y × Y )

for m even and z × z
�
+ z

� × z = 0 in CH0(Y × Y ) for m odd.

The case m = 2 is particularly interesting, as noticed in [30]. In this case, we indeed have :

L���� 4.8. – Let H,H
p,q

be a weight 2 Hodge structure of K3 type, namely h
2,0

= 1.

Then the Hodge structures on
�

k
H all have niveau ≤ 2 (that is coniveau ≥ k − 1).

Proof. – Write H = H
2,0 �

H
1,1 ⊕H

0,2. Then

k�
H = H

2,0 ⊗
k−1�

H
1,1 ⊕ (

k�
H

1,1 ⊕H
2,0 ⊗H

0,2 ⊗
k−2�

H
1,1

)⊕
k−1�

H
1,1 ⊗H

0,2

is the Hodge decomposition of
�

k
H , whose first nonzero term is of type (k + 1, k− 1).

When k > dim H , we of course have that the Hodge structure on
�

k
H is trivial. Applying

these observations to the case where H = H
2
(S, Q) where S is an algebraic K3 surface, we

find that Conjecture 1.3 (or rather, its extension to motives) predicts the following (cf. [30]):

C�ɴ�����ʀ� 4.9. – (i) Let S be an algebraic K3 surface. Then for any k ≥ 2, and i ≤ k−2,

the projector πalt =
�

σ∈Sk
(−1)

�(σ)
σ ∈ CH

2k
(S

k × S
k
) composed with the Chow-Künneth

projector π
⊗k

2 (cf. [18]) acts as 0 on CHi(S
k
)Q for i ≤ k − 2.

(ii) For k > b2(S), this projector is identically 0.
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Note that (ii) above is essentially Kimura’s finite dimensionality conjecture [12] and
applies to any regular surface. One may wonder whether it could be attacked by the methods
of the present paper for the case of quartic K3 surfaces. The question would be essentially
to study whether the fibered product X2k/B of the universal such K3 surface satisfies prop-
erty P. For small k, this can be done by the methods used in the proof of Proposition 4.11
below, but we would need to know this in the range k ≥ 44 in order to prove the Kimura
conjecture. This seems to be very hard.

The fact that this is true for small k (see below) shows that Conjecture 4.9 is implied by
the generalized Hodge conjecture for the self-products S

k and the coniveau k − 1 Hodge
structures

�
k
H

2
(S, Q) ⊂ H

2k
(S

k
, Q).

Let us be a little more explicit in the case of general Calabi-Yau complete intersections
and for k = 2. Let Xb be a smooth Calabi-Yau complete intersection of dimension m in
projective space Pn. Let ∆b,van ∈ CH

m
(Xb×Xb)Q be the corrected diagonal, whose action

on H
∗
(Xb, Q) is the projection on H

m
(Xb, Q)van. On Xb×Xb×Xb×Xb, there is the induced

2m-cycle
∆b,van,2 := p

∗
13∆b,van · p∗24∆b,van,

where pij is the projection from X
4
b

to the product X
2
b

of its i-th and j-th factor. The action
on ∆b,van,2 seen as a self-correspondence of X

2
b

on H
∗
(X

2
b
, Q) is the orthogonal projector

on
p
∗
1H

m
(Xb, Q)van ⊗ p

∗
2H

m
(Xb, Q)van ⊂ H

2m
(Xb ×Xb, Q).

If instead of ∆b,van,2, we consider

∆
τ

b,van,2 := p
∗
14∆b,van · p∗23∆b,van,

then the action on ∆b,van,2 seen as a self-correspondence of X
2
b

on H
∗
(X

2
b
, Q) is the compo-

sition of the previous projector with the permutation

τ∗ : H
m

(Xb, Q)van ⊗H
m

(Xb, Q)van → H
m

(Xb, Q)van ⊗H
m

(Xb, Q)van

exchanging summands. Note that the inclusion

H
m

(Xb, Q)van ⊗H
m

(Xb, Q)van ⊂ H
2m

(Xb ×Xb, Q)

sends the antiinvariant part on the left to the antiinvariant part under τ on the right if m is
even, and to the invariant part under τ on the right if m is even. This is due to the fact that
the cup-product on cohomology is graded commutative.

Hence we conclude that

∆
�

b,van,2 := ∆b,van,2 −∆
τ

b,van,2

acts on H
∗
(X

2
b
, Q) as twice the projector onto

�2
H

m
(Xb×Xb, Q)van if m is even, and that

∆
inv
b,van,2 := ∆b,van,2 + ∆

τ

b,van,2

acts on H
∗
(X

2
b
, Q) as twice the projector onto

�2
H

m
(Xb ×Xb, Q)van if m is odd.

In both cases, using Lemma 4.6, we get that this is twice the orthogonal projector associ-
ated to a sub-Hodge structure of Hodge coniveau ≥ 1.

Restricting to the case of Calabi-Yau hypersurfaces in Pn (so m = n − 1), an easy
adaptation of the proof of Theorem 1.7 gives now:
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Tʜ��ʀ�� 4.10 (cf. Theorem 1.11). – Assume Conjecture 1.6 holds and the generalized

Hodge conjecture holds for the coniveau 1 Hodge structure on
�2

H
n−1

(Xb × Xb, Q)van ⊂
H

2n−2
(Xb ×Xb, Q), where Xb is a general Calabi-Yau hypersurface in projective space. Then

the general such Xb has the following property:

(i) If n− 1 is even, for any two 0-cycles z, z
�

of degree 0 on Xb, we have z× z
� − z

� × z = 0

in CH0(X ×X).

(ii) If n− 1 is odd, for any two 0-cycles z, z
�

of degree 0 on Xb, we have z× z
�
+ z

� × z = 0

in CH0(X ×X).

Proof. – We just sketch the proof, as it is actually a variant of the proof of Theorem 1.7.
With the same notations as in 3.9 (where X will be the projective space Pn), we claim that it
suffices to show that, if n− 1 is even, the spread-out cycles

D�

van,2 := Dvan,2 − Dτ

van,2 ∈ CH
2n−2

( X ×B X ×B X ×B X)Q

can be written as a sum

D�

van,2 = Z1 + Z2 in CH
2m

( X ×B X ×B X ×B X)Q,(15)

where Z1 is supported on Y×B Y, with Y � X×B X , and Z2 is a cycle which is the restriction
of cycles on various copies of X ×B X ×B×X ×X (ordered adequately), via the inclusion
X ⊂ B ×X; similarly for n− 1 odd, with D�

van,2 replaced by

Dinv
van,2 := Dvan,2 + Dτ

van,2 ∈ CH
2n−2

( X ×B X ×B X ×B X)Q.

Indeed, if we know this, restricting to a general point b ∈ B, we get that for n − 1 even
∆

�

van,2 := ∆van,2 −∆
τ

van,2 ∈ CH
2n−2

(X
4
b
)Q can be written as a sum

∆
�

van,2 = Z1 + Z2,(16)

where Z1 is supported on Y
b
× Y

b
, with Y

b
� Xb × Xb, and Z2 is a cycle which is

the restriction of cycles on various copies of Xb × Xb × X × X (ordered adequately),
via the inclusion jb : Xb �→ X = Pn. Similarly for n − 1 odd with ∆

�

van,2 replaced
by ∆

inv
van,2. We see Equation (16) as an equality of self-correspondences of X

2
b

and we let
both sides of (16) act on z × z

�, where z, z
� ∈ CH0(Xb) have degree 0. On the left, we get

∆
�

van,2(z × z
�
) = z × z

� − z
� × z. Next the cycle Z1 being supported on Y

b
× Y

b
, with

Y
b

� Xb ×Xb, acts trivially on CH0(Xb ×Xb). We thus get (for n− 1 even), decomposing
Z2 as a sum Z2 =

�
i
Z2,i|X4

b
where Z2,i ∈ CH

2n−2
(Xb× · · · ×X × . . . Xb), with the factor

X put in i-th position:

z × z
� − z

� × z =

�

i

(Z2,i|X4
b
)∗(z × z

�
) in CH0(X

2
)Q.(17)

If i = 1, 2, (Z2,i|X4
b
)∗(z× z

�
) vanishes because, as CH0(X) = CH0(Pn

) = Z, both cycles
z × jb∗z

� ∈ CH0(Xb ×X) and jb∗z × z
� ∈ CH0(X ×Xb) vanish. For i = 3, 4, we have that

(Z2,i|X4
b
)∗(z×z

�
) belongs to CH1(Xb×X)|Xb×Xb

or to CH1(X×Xb)|Xb×Xb
with X = Pn.

Thus we get using the decomposition of CH1(Xb×Pn
) as CH0(Xb)⊗Zh1⊕CH1(Xb)×Zh0,

where h1 is the class of a line and h0 is the class of a point in Pn, an equality:

z × z
� − z

� × z = w1 × h1|Xb
+ h1|Xb

× w2 in CH0(Xb ×Xb)Q,
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with wi ∈ CH0(Xb). Applying pr1∗ and pr2∗ to both sides of this equality, we finally get
that w1 = w2 = 0 in CH0(Xb)Q. Thus we proved assuming (15) that z × z

� − z
� × z = 0

in CH0(X
2
b
)Q for n−1 even and the same proof will show that z×z

�
+z

�×z = 0 in CH0(X
2
b
)Q

for n−1 odd. As these cycles belong to the kernel of the Albanese map, we also conclude by
Roitman’s theorem [24] that these equalities in fact hold in CH0(X

2
b
).

It remains to see how to get (15) from the condition that the generalized Hodge conjec-
ture holds for the coniveau 1 Hodge structure on

�2
H

n−1
(Xb)prim combined with Conjec-

ture 1.6. As in the proof of Theorem 1.7, we find that under these two assumptions, we have
an equality of cycle classes

[D�

van,2] = [ Z1] + [ Z2] in H
4n−4

( X ×B X ×B X ×B X , Q),(18)

where Z1 is supported on Y×B Y, with Y � X×B X , and Z2 is a cycle which is the restriction
of cycles on various copies of X ×B X ×B ×X ×X.

Equation (15) follows from (18) and from the following Proposition 4.11. This finishes the
proof of Theorem 1.11.

Pʀ����ɪ�ɪ�ɴ 4.11. – Assume Conjecture 1.6. Then the fourth fibered product X×B X×B

X ×B X of universal hypersurfaces of degree ≥ 3 in Pn
satisfies property P2n−2.

Proof. – As we are interested into cycles of codimension ≤ 2n− 2, we can restrict to the
open set X4/B

0 defined as the complement of the small relative diagonal X ⊂ X4/B

0 which is
of codimension 3n− 3.

We apply the relative version of Lemma 4.12 below. This provides us with a certain blow-

up
flX4/B

0 of the relative Fulton-MacPherson configuration space (cf. [8]). It is smooth and

proper over X4/B

0 . In order to prove the result, it suffices by Lemma 3.4 to show that
flX4/B

0

satisfies property P2n−2. By the functoriality statement in Lemma 4.12, there is a morphism

from
flX4/B

0 to fl
(Pn)

4
0 and in particular to the punctual Hilbert scheme Hilb

4
(Pn

), so that an

element of
flX4/B

0 determines a 4-uple (x1, . . . , x4) ∈ Xb together with a subscheme z of
Xb ⊂ Pn of length 4 with associated cycle x1+· · ·+x4. It is an easy result that any subscheme
z of length 4 of Pn whose support consists of at least two points imposes independent

conditions to degree n+1 hypersurfaces, with n+1 ≥ 3. It follows that
flX4/B

0 can be realized

as a Zariski open set of a projective bundle over the space fl
(Pn)

4
0 constructed below. Namely,

over a point u in this space, giving rise to x1, . . . , x4 together with a schematic structure z

with associated cycle x1 + · · · + x4, the fiber is the projective space P(H
0
(Pn

, I z(n + 1))),
and we have to take the Zariski open set in it parameterizing smooth hypersurfaces.

Lemma 3.3 says that fl
(Pn)

4
0 satisfies property P2n−2. By Lemma 3.2, it follows that the

projective bundle described above over fl
(Pn)

4
0 also satisfies P2n−2. By Lemma 3.1, the Zariski

open set
flX4/B

0 inside it also satisfies P2n−2.

L���� 4.12 (cf. [15]). – Let X be a smooth variety of any dimension n. Denote by X
4
0 the

open set X
4 \∆X,4, where ∆X,4

∼= X is the small diagonal. There is a smooth variety
›
X

4
0 which

admits a morphism to Hilb
4
(X) (so the rational map σ : X

4
0 ��� Hilb

4
(X) is desingularized
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on
›
X

4
0), whose construction is functorial under immersions, and which satisfies property P2n−2

if X satisfies property P.

Proof. – We will just describe the construction of ›
X

4
0 over a neighborhood in X

4
0 of a

point of X
4
0 of type (3, 1), that is a point which corresponds to a relative 0-cycle of the form

3x + y. The case of points of type (2, 2) (that is a point which corresponds to a 0-cycle of
the form 2x + 2y) or with a support of cardinal ≥ 3 is easy and left to the reader. As the
set of points of type (3, 1) and (2, 2) are disjoint in X

4
0 there is no problem to glue the local

constructions.
We first blow up inside X

4
0 the union of the images under permutation of the diagonals of

type ∆xxxy parameterizing the points

(x, x, x, y) ∈ X
4
0 , x, y ∈ X, x �= y.

We then blow up the (disjoint union of the) proper transforms of the images under permu-
tations of the big diagonal ∆xxyz which is defined as the closure of the set of points

(x, x, y, z) ∈ X
4
0 , x, y, z ∈ X, x, y, z distinct.

What we get at this point is nothing but the Fulton-MacPherson compactification X(4)0 of
the configuration space of 4 points, at least over the open set X

4
0 of X

4 (cf. [8]).
The rational map σ : X(4)0 ��� Hilb

4
(X) is not yet a morphism, as shown to us by

Totaro. What we need to blow up is the following locus M (pointed out by Totaro): over
the diagonal ∆x,x,x,y (or any image of it under permutation), the exceptional divisor over
∆x,x,x,y is (before the second blow-up) the projective bundle P(p

∗
x
TX ⊕ p

∗
x
TX) where px is

the first projection ∆xxxy
∼= X×X → X. Let M

� ⊂ P(p
∗
x
TX⊕p

∗
x
TX) be the locus of couples

(v1, v2) where v1, v2 are colinear. M
� is isomorphic to P1 × P(p

∗
x
TX). Let M be the proper

transform of M
� under the second blow-up, that is in X(4)0. M is isomorphic to M

�.
It is explained in the letter [15] that σ becomes well-defined on the blow-up of X(4)0 along

M , as a consequence of Hayman’s theorem [11]. This of course concerns the case where
dim X = 2. However, we are looking at Hilb

4
(X)0, the open set of Hilb

4
(X) where the

support has cardinality at least 2, and in fact are mostly concerned with the neighborhood
in Hilb

4
(X) of punctual subschemes of type (3, 1). As this is locally (in the étale or analytic

topology) isomorphic to the product X × Hilb
3
(X), we are reduced to study the case

of Hilb
3
(X) in a neighborhood of a fat point z. We observe now that any length 3 subscheme

z ⊂ X is contained in a smooth surface in X. More precisely, if n is the dimension of X, we
choose a linear system of hypersurfaces H0 . . . , Hn in X with the property that z imposes
3 independent conditions to < H0, . . . ,Hn >, and that the locus Σz ⊂ X defined by the
linear subsystem Iz ⊂< H0, . . . ,Hn > is smooth. The map

φ : Hilb
3
(X) → Grass(3, n + 1),

z
� �→ Iz� ⊂< H0, . . . ,Hn >

is then well-defined near z, dominant, with fibers through a point z
� ∈ Hilb

3
(X) close to z

the Hilbert scheme Hilb
3
(Σz�) of the smooth surface Σz� . Using this, we easily reduce the

general case to the surface case.
Applying Lemmas 3.3 and 3.1, it is easy to show that the resulting variety ›

X
4
0 , satisfies

property P2n−2 if X satisfies property P.
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