A Regularity Criterion for the Dissipative Quasi-Geostrophic Equations
Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 5, pp. 1607-1619.
@article{AIHPC_2009__26_5_1607_0,
     author = {Dong, Hongjie and Pavlovi\'c, Nata\v{s}A},
     title = {A {Regularity} {Criterion} for the {Dissipative} {Quasi-Geostrophic} {Equations}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1607--1619},
     publisher = {Elsevier},
     volume = {26},
     number = {5},
     year = {2009},
     doi = {10.1016/j.anihpc.2008.08.001},
     mrnumber = {2566702},
     zbl = {1176.35133},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2008.08.001/}
}
TY  - JOUR
AU  - Dong, Hongjie
AU  - Pavlović, NatašA
TI  - A Regularity Criterion for the Dissipative Quasi-Geostrophic Equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2009
SP  - 1607
EP  - 1619
VL  - 26
IS  - 5
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2008.08.001/
DO  - 10.1016/j.anihpc.2008.08.001
LA  - en
ID  - AIHPC_2009__26_5_1607_0
ER  - 
%0 Journal Article
%A Dong, Hongjie
%A Pavlović, NatašA
%T A Regularity Criterion for the Dissipative Quasi-Geostrophic Equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2009
%P 1607-1619
%V 26
%N 5
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2008.08.001/
%R 10.1016/j.anihpc.2008.08.001
%G en
%F AIHPC_2009__26_5_1607_0
Dong, Hongjie; Pavlović, NatašA. A Regularity Criterion for the Dissipative Quasi-Geostrophic Equations. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 5, pp. 1607-1619. doi : 10.1016/j.anihpc.2008.08.001. https://www.numdam.org/articles/10.1016/j.anihpc.2008.08.001/

[1] L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, preprint.

[2] Chae D., The Quasi-Geostrophic Equation in the Triebel-Lizorkin Spaces, Nonlinearity 16 (2) (2003) 479-495. | MR | Zbl

[3] Chae D., On the Regularity Conditions for the Dissipative Quasi-Geostrophic Equations, SIAM J. Math. Anal. 37 (5) (2006) 1649-1656. | MR | Zbl

[4] Chae D., Lee J., Global Well-Posedness in the Super-Critical Dissipative Quasi-Geostrophic Equations, Commun. Math. Phys. 233 (2003) 297-311. | MR | Zbl

[5] Chemin J.-Y., Théorèmes D'unicité Pour Le Système De Navier-Stokes Tridimensionnel, J. Anal. Math. 77 (1999) 27-50, (in French). | MR | Zbl

[6] Chen Q., Miao C., Zhang Z., A New Bernstein's Inequality and the 2D Dissipative Quasi-Geostrophic Equation, Commun. Math. Phys. 271 (3) (2007) 821-838. | MR | Zbl

[7] Cheskidov A., Shvydkoy R., On the Regularity of Weak Solutions of the 3D Navier-Stokes Equations in B,-1, preprint, arXiv: math.AP/0708.3067. | MR

[8] Constantin P., Cordoba D., Wu J., On the Critical Dissipative Quasi-Geostrophic Equation, Indiana Univ. Math. J. 50 (2001) 97-107. | MR | Zbl

[9] Constantin P., Majda A. J., Tabak E., Formation of Strong Fronts in the 2-D Quasigeostrophic Thermal Active Scalar, Nonlinearity 7 (6) (1994) 1495-1533. | MR | Zbl

[10] Constantin P., Wu J., Behavior of Solutions of 2D Quasi-Geostrophic Equations, SIAM J. Math. Anal. 30 (1999) 937-948. | MR | Zbl

[11] P. Constantin, J. Wu, Hölder continuity of solutions of super-critical dissipative hydrodynamic transport equations, Ann. I. H. Poincaré - AN (2007), doi:10.1016/j.anihpc.2007.10.002. | Numdam | Zbl

[12] P. Constantin, J. Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. I. H. Poincaré - AN (2007), doi:10.1016/j.anihpc.2007.10.001. | Numdam | Zbl

[13] Danchin R., Density-Dependent Incompressible Viscous Fluids in Critical Spaces, Proc. Roy. Soc. Edinburgh Sect. A 133 (6) (2003) 1311-1334. | MR | Zbl

[14] Dong B.-Q., Chen Z.-M., A Remark on Regularity Criterion for the Dissipative Quasi-Geostrophic Equations, J. Math. Anal. Appl. (2007) 1212-1217. | MR | Zbl

[15] H. Dong, Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global well-posedness, 2007, submitted for publication.

[16] Dong H., Du D., Global Well-Posedness and a Decay Estimate for the Critical Dissipative Quasi-Geostrophic Equation in the Whole Space, Discrete Contin. Dyn. Syst. 21 (4) (2008) 1095-1101. | MR | Zbl

[17] H. Dong, D. Li, On the 2D critical and supercritical dissipative quasi-geostrophic equation in Besov spaces, 2007, submitted for publication.

[18] Escauriaza L., Seregin G., Šverak V., L3,-Solutions of the Navier-Stokes Equations and Backward Uniqueness, Russian Math. Surveys 58 (2003). | MR | Zbl

[19] Giga Y., Solutions for Semilinear Parabolic Equations in Lp and Regularity of Weak Solutions of the Navier-Stokes System, J. Differential Equations 61 (1986) 186-212. | MR | Zbl

[20] Hmidi T., Keraani S., Global Solutions of the Super-Critical 2D Quasi-Geostrophic Equation in Besov Spaces, Adv. Math. 214 (2) (2007) 618-638. | MR | Zbl

[21] Ju N., The Maximum Principle and the Global Attractor for the Dissipative 2D Quasi-Geostrophic Equations, Commun. Math. Phys. 255 (1) (2005) 161-181. | MR | Zbl

[22] Kiselev A., Nazarov F., Volberg A., Global Well-Posedness for the Critical 2D Dissipative Quasi-Geostrophic Equation, Invent. Math. 167 (3) (2007) 445-453. | MR | Zbl

[23] Ladyzhenskaya O. A., On Uniqueness and Smoothness of Generalized Solutions to the Navier-Stokes Equations, Zapiski Nauchn. Seminar. POMI 5 (1967) 169-185. | MR | Zbl

[24] Miura H., Dissipative Quasi-Geostrophic Equation for Large Initial Data in the Critical Sobolev Space, Commun. Math. Phys. 267 (1) (2006) 141-157. | MR | Zbl

[25] Pedlosky J., Geophysical Fluid Dynamics, Springer, New York, 1987. | Zbl

[26] Prodi G., Un Teorema Di Unicità Per El Equazioni Di Navier-Stokes, Ann. Mat. Pura Appl. 48 (1959) 173-182. | MR | Zbl

[27] S. Resnick, Dynamical problems in nonlinear advective partial differential equations, Ph.D. thesis, University of Chicago, 1995.

[28] Serrin J., On the Interior Regularity of Weak Solutions of the Navier-Stokes Equations, Arch. Ration. Mech. Anal. 9 (1962) 187-195. | MR | Zbl

[29] Wu J., Global Solutions of the 2D Dissipative Quasi-Geostrophic Equations in Besov Spaces, SIAM J. Math. Anal. 36 (3) (2004/2005) 1014-1030, (electronic). | MR | Zbl

[30] Wu J., Lower Bounds for an Integral Involving Fractional Laplacians and the Generalized Navier-Stokes Equations in Besov Spaces, Commun. Math. Phys. 263 (3) (2006) 803-831. | MR | Zbl

[31] Wu J., Existence and Uniqueness Results for the 2-D Dissipative Quasi-Geostrophic Equation, Nonlinear Anal. 67 (2007) 3013-3036. | MR | Zbl

  • Bulut, Aynur; Dong, Hongjie Global Well-Posedness for Supercritical SQG With Perturbations of Radially Symmetric Data, International Mathematics Research Notices, Volume 2024 (2024) no. 24, p. 14655 | DOI:10.1093/imrn/rnae253
  • Choi, Hyungjun Global well-posedness of slightly supercritical SQG equations and gradient estimate, Nonlinearity, Volume 36 (2023) no. 5, p. 2166 | DOI:10.1088/1361-6544/acc2a6
  • Ibdah, Hussain Lipschitz Continuity of Solutions to Drift-Diffusion Equations in the Presence of Nonlocal Terms, Journal of Mathematical Fluid Mechanics, Volume 24 (2022) no. 1 | DOI:10.1007/s00021-022-00658-7
  • Zhang, Huali; Li, Jinlu Global large, smooth solutions of the 2D surface quasi‐geostrophic equations, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 13, p. 10076 | DOI:10.1002/mma.7392
  • Ye, Zhuan On the global regularity for the anisotropic dissipative surface quasi-geostrophic equation, Nonlinearity, Volume 33 (2020) no. 1, p. 72 | DOI:10.1088/1361-6544/ab41e6
  • Liu, Jianli; Pan, Kejia; Wu, Jiahong A class of large solutions to the supercritical surface quasi-geostrophic equation, Nonlinearity, Volume 32 (2019) no. 12, p. 5049 | DOI:10.1088/1361-6544/ab3628
  • Chen, Jianwen; Chen, Zhi-Min; Dong, Bo-Qing Commutator estimate and its application to regularity criteria of the dissipative quasi-geostrophic equation, Applied Mathematics and Computation, Volume 329 (2018), p. 84 | DOI:10.1016/j.amc.2018.01.062
  • Zhang, Zujin On the blow-up criterion for the quasi-geostrophic equations in homogeneous Besov spaces, Computers Mathematics with Applications, Volume 75 (2018) no. 3, p. 1038 | DOI:10.1016/j.camwa.2017.10.031
  • Wen, Zhihong; Ye, Zhuan A logarithmically improved regularity criterion for the surface quasi-geostrophic equation, Computers Mathematics with Applications, Volume 75 (2018) no. 4, p. 1368 | DOI:10.1016/j.camwa.2017.11.004
  • Jia, Yan; Xie, Qianqian; Dong, Bo-Qing Optimal convergence rates of the supercritical surface quasi-geostrophic equation, Nonlinear Analysis: Real World Applications, Volume 44 (2018), p. 106 | DOI:10.1016/j.nonrwa.2018.05.001
  • Gala, Sadek A logarithmically improved regularity criterion for the supercritical quasi-geostrophic equations in Besov space, Acta Mathematicae Applicatae Sinica, English Series, Volume 33 (2017) no. 3, p. 679 | DOI:10.1007/s10255-017-0690-1
  • Constantin, Peter Nonlocal nonlinear advection-diffusion equations, Chinese Annals of Mathematics, Series B, Volume 38 (2017) no. 1, p. 281 | DOI:10.1007/s11401-016-1071-4
  • Dai, Mimi Regularity Criterion and Energy Conservation for the Supercritical Quasi-geostrophic Equation, Journal of Mathematical Fluid Mechanics, Volume 19 (2017) no. 2, p. 191 | DOI:10.1007/s00021-017-0320-y
  • Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan Global Regularity for Several Incompressible Fluid Models with Partial Dissipation, Journal of Mathematical Fluid Mechanics, Volume 19 (2017) no. 3, p. 423 | DOI:10.1007/s00021-016-0291-4
  • Zhang, Qian On the regularity of weak solutions for a modified dissipative quasi-geostrophic equation, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, Volume 111 (2017) no. 1, p. 89 | DOI:10.1007/s13398-016-0279-1
  • Shang, Haifeng; Guo, Yana; Song, Mengmeng Global regularity for the supercritical active scalars, Zeitschrift für angewandte Mathematik und Physik, Volume 68 (2017) no. 3 | DOI:10.1007/s00033-017-0810-z
  • Zhao, Jihong The optimal temporal decay estimates for the fractional power dissipative equation in negative Besov spaces, Journal of Mathematical Physics, Volume 57 (2016) no. 5 | DOI:10.1063/1.4949769
  • Chen, Zhi-Min Bifurcating steady-state solutions of the dissipative quasi-geostrophic equation in Lagrangian formulation, Nonlinearity, Volume 29 (2016) no. 10, p. 3132 | DOI:10.1088/0951-7715/29/10/3132
  • Jia, Yan; Dong, Bo-Qing Remarks on the logarithmical regularity criterion of the supercritical surface quasi-geostrophic equation in Morrey spaces, Applied Mathematics Letters, Volume 43 (2015), p. 80 | DOI:10.1016/j.aml.2014.11.012
  • Kriventsov, Dennis Regularity for a Local–Nonlocal Transmission Problem, Archive for Rational Mechanics and Analysis, Volume 217 (2015) no. 3, p. 1103 | DOI:10.1007/s00205-015-0851-4
  • Zhao, Jihong; Liu, Qiao On the Serrin’s regularity criterion for the β-generalized dissipative surface quasi-geostrophic equation, Chinese Annals of Mathematics, Series B, Volume 36 (2015) no. 6, p. 947 | DOI:10.1007/s11401-015-0932-6
  • Constantin, Peter; Tarfulea, Andrei; Vicol, Vlad Long Time Dynamics of Forced Critical SQG, Communications in Mathematical Physics, Volume 335 (2015) no. 1, p. 93 | DOI:10.1007/s00220-014-2129-3
  • Jiu, Quansen; Wu, Jiahong; Yang, Wanrong Eventual Regularity of the Two-Dimensional Boussinesq Equations with Supercritical Dissipation, Journal of Nonlinear Science, Volume 25 (2015) no. 1, p. 37 | DOI:10.1007/s00332-014-9220-y
  • Constantin, Peter; Tarfulea, Andrei; Vicol, Vlad Absence of Anomalous Dissipation of Energy in Forced Two Dimensional Fluid Equations, Archive for Rational Mechanics and Analysis, Volume 212 (2014) no. 3, p. 875 | DOI:10.1007/s00205-013-0708-7
  • Xu, Jiang; Tan, Yanfei The well-posedness of the surface quasi-geostrophic equations in the Besov–Morrey spaces, Nonlinear Analysis: Theory, Methods Applications, Volume 92 (2013), p. 60 | DOI:10.1016/j.na.2013.06.019
  • Liu, Qingqing; Jia, Yan; Dong, Bo-Qing Remarks on the weak–strong uniqueness for the 2D quasi-geostrophic equation in BMO space, Applied Mathematics Letters, Volume 25 (2012) no. 10, p. 1470 | DOI:10.1016/j.aml.2011.12.026
  • Constantin, Peter; Lai, Ming-Chih; Sharma, Ramjee; Tseng, Yu-Hou; Wu, Jiahong New Numerical Results for the Surface Quasi-Geostrophic Equation, Journal of Scientific Computing, Volume 50 (2012) no. 1, p. 1 | DOI:10.1007/s10915-011-9471-9
  • Yamazaki, Kazuo On the regularity criteria of a surface quasi-geostrophic equation, Nonlinear Analysis: Theory, Methods Applications, Volume 75 (2012) no. 13, p. 4950 | DOI:10.1016/j.na.2012.04.010
  • Dong, Bo-Qing; Chen, Zhi-Min On the weak-strong uniqueness of the dissipative surface quasi-geostrophic equation, Nonlinearity, Volume 25 (2012) no. 5, p. 1513 | DOI:10.1088/0951-7715/25/5/1513
  • Chae, Dongho; Constantin, Peter; Wu, Jiahong Inviscid Models Generalizing the Two-dimensional Euler and the Surface Quasi-geostrophic Equations, Archive for Rational Mechanics and Analysis, Volume 202 (2011) no. 1, p. 35 | DOI:10.1007/s00205-011-0411-5

Cité par 30 documents. Sources : Crossref