@article{AIHPC_2009__26_5_1607_0, author = {Dong, Hongjie and Pavlovi\'c, Nata\v{s}A}, title = {A {Regularity} {Criterion} for the {Dissipative} {Quasi-Geostrophic} {Equations}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1607--1619}, publisher = {Elsevier}, volume = {26}, number = {5}, year = {2009}, doi = {10.1016/j.anihpc.2008.08.001}, mrnumber = {2566702}, zbl = {1176.35133}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2008.08.001/} }
TY - JOUR AU - Dong, Hongjie AU - Pavlović, NatašA TI - A Regularity Criterion for the Dissipative Quasi-Geostrophic Equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 1607 EP - 1619 VL - 26 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2008.08.001/ DO - 10.1016/j.anihpc.2008.08.001 LA - en ID - AIHPC_2009__26_5_1607_0 ER -
%0 Journal Article %A Dong, Hongjie %A Pavlović, NatašA %T A Regularity Criterion for the Dissipative Quasi-Geostrophic Equations %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 1607-1619 %V 26 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2008.08.001/ %R 10.1016/j.anihpc.2008.08.001 %G en %F AIHPC_2009__26_5_1607_0
Dong, Hongjie; Pavlović, NatašA. A Regularity Criterion for the Dissipative Quasi-Geostrophic Equations. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 5, pp. 1607-1619. doi : 10.1016/j.anihpc.2008.08.001. https://www.numdam.org/articles/10.1016/j.anihpc.2008.08.001/
[1] L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, preprint.
[2] The Quasi-Geostrophic Equation in the Triebel-Lizorkin Spaces, Nonlinearity 16 (2) (2003) 479-495. | MR | Zbl
,[3] On the Regularity Conditions for the Dissipative Quasi-Geostrophic Equations, SIAM J. Math. Anal. 37 (5) (2006) 1649-1656. | MR | Zbl
,[4] Global Well-Posedness in the Super-Critical Dissipative Quasi-Geostrophic Equations, Commun. Math. Phys. 233 (2003) 297-311. | MR | Zbl
, ,[5] Théorèmes D'unicité Pour Le Système De Navier-Stokes Tridimensionnel, J. Anal. Math. 77 (1999) 27-50, (in French). | MR | Zbl
,[6] A New Bernstein's Inequality and the 2D Dissipative Quasi-Geostrophic Equation, Commun. Math. Phys. 271 (3) (2007) 821-838. | MR | Zbl
, , ,
[7] On the Regularity of Weak Solutions of the 3D Navier-Stokes Equations in
[8] On the Critical Dissipative Quasi-Geostrophic Equation, Indiana Univ. Math. J. 50 (2001) 97-107. | MR | Zbl
, , ,[9] Formation of Strong Fronts in the 2-D Quasigeostrophic Thermal Active Scalar, Nonlinearity 7 (6) (1994) 1495-1533. | MR | Zbl
, , ,[10] Behavior of Solutions of 2D Quasi-Geostrophic Equations, SIAM J. Math. Anal. 30 (1999) 937-948. | MR | Zbl
, ,[11] P. Constantin, J. Wu, Hölder continuity of solutions of super-critical dissipative hydrodynamic transport equations, Ann. I. H. Poincaré - AN (2007), doi:10.1016/j.anihpc.2007.10.002. | Numdam | Zbl
[12] P. Constantin, J. Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. I. H. Poincaré - AN (2007), doi:10.1016/j.anihpc.2007.10.001. | Numdam | Zbl
[13] Density-Dependent Incompressible Viscous Fluids in Critical Spaces, Proc. Roy. Soc. Edinburgh Sect. A 133 (6) (2003) 1311-1334. | MR | Zbl
,[14] A Remark on Regularity Criterion for the Dissipative Quasi-Geostrophic Equations, J. Math. Anal. Appl. (2007) 1212-1217. | MR | Zbl
, ,[15] H. Dong, Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global well-posedness, 2007, submitted for publication.
[16] Global Well-Posedness and a Decay Estimate for the Critical Dissipative Quasi-Geostrophic Equation in the Whole Space, Discrete Contin. Dyn. Syst. 21 (4) (2008) 1095-1101. | MR | Zbl
, ,[17] H. Dong, D. Li, On the 2D critical and supercritical dissipative quasi-geostrophic equation in Besov spaces, 2007, submitted for publication.
[18]
[19] Solutions for Semilinear Parabolic Equations in
[20] Global Solutions of the Super-Critical 2D Quasi-Geostrophic Equation in Besov Spaces, Adv. Math. 214 (2) (2007) 618-638. | MR | Zbl
, ,[21] The Maximum Principle and the Global Attractor for the Dissipative 2D Quasi-Geostrophic Equations, Commun. Math. Phys. 255 (1) (2005) 161-181. | MR | Zbl
,[22] Global Well-Posedness for the Critical 2D Dissipative Quasi-Geostrophic Equation, Invent. Math. 167 (3) (2007) 445-453. | MR | Zbl
, , ,[23] On Uniqueness and Smoothness of Generalized Solutions to the Navier-Stokes Equations, Zapiski Nauchn. Seminar. POMI 5 (1967) 169-185. | MR | Zbl
,[24] Dissipative Quasi-Geostrophic Equation for Large Initial Data in the Critical Sobolev Space, Commun. Math. Phys. 267 (1) (2006) 141-157. | MR | Zbl
,[25] Geophysical Fluid Dynamics, Springer, New York, 1987. | Zbl
,[26] Un Teorema Di Unicità Per El Equazioni Di Navier-Stokes, Ann. Mat. Pura Appl. 48 (1959) 173-182. | MR | Zbl
,[27] S. Resnick, Dynamical problems in nonlinear advective partial differential equations, Ph.D. thesis, University of Chicago, 1995.
[28] On the Interior Regularity of Weak Solutions of the Navier-Stokes Equations, Arch. Ration. Mech. Anal. 9 (1962) 187-195. | MR | Zbl
,[29] Global Solutions of the 2D Dissipative Quasi-Geostrophic Equations in Besov Spaces, SIAM J. Math. Anal. 36 (3) (2004/2005) 1014-1030, (electronic). | MR | Zbl
,[30] Lower Bounds for an Integral Involving Fractional Laplacians and the Generalized Navier-Stokes Equations in Besov Spaces, Commun. Math. Phys. 263 (3) (2006) 803-831. | MR | Zbl
,[31] Existence and Uniqueness Results for the 2-D Dissipative Quasi-Geostrophic Equation, Nonlinear Anal. 67 (2007) 3013-3036. | MR | Zbl
,- Global Well-Posedness for Supercritical SQG With Perturbations of Radially Symmetric Data, International Mathematics Research Notices, Volume 2024 (2024) no. 24, p. 14655 | DOI:10.1093/imrn/rnae253
- Global well-posedness of slightly supercritical SQG equations and gradient estimate, Nonlinearity, Volume 36 (2023) no. 5, p. 2166 | DOI:10.1088/1361-6544/acc2a6
- Lipschitz Continuity of Solutions to Drift-Diffusion Equations in the Presence of Nonlocal Terms, Journal of Mathematical Fluid Mechanics, Volume 24 (2022) no. 1 | DOI:10.1007/s00021-022-00658-7
- Global large, smooth solutions of the 2D surface quasi‐geostrophic equations, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 13, p. 10076 | DOI:10.1002/mma.7392
- On the global regularity for the anisotropic dissipative surface quasi-geostrophic equation, Nonlinearity, Volume 33 (2020) no. 1, p. 72 | DOI:10.1088/1361-6544/ab41e6
- A class of large solutions to the supercritical surface quasi-geostrophic equation, Nonlinearity, Volume 32 (2019) no. 12, p. 5049 | DOI:10.1088/1361-6544/ab3628
- Commutator estimate and its application to regularity criteria of the dissipative quasi-geostrophic equation, Applied Mathematics and Computation, Volume 329 (2018), p. 84 | DOI:10.1016/j.amc.2018.01.062
- On the blow-up criterion for the quasi-geostrophic equations in homogeneous Besov spaces, Computers Mathematics with Applications, Volume 75 (2018) no. 3, p. 1038 | DOI:10.1016/j.camwa.2017.10.031
- A logarithmically improved regularity criterion for the surface quasi-geostrophic equation, Computers Mathematics with Applications, Volume 75 (2018) no. 4, p. 1368 | DOI:10.1016/j.camwa.2017.11.004
- Optimal convergence rates of the supercritical surface quasi-geostrophic equation, Nonlinear Analysis: Real World Applications, Volume 44 (2018), p. 106 | DOI:10.1016/j.nonrwa.2018.05.001
- A logarithmically improved regularity criterion for the supercritical quasi-geostrophic equations in Besov space, Acta Mathematicae Applicatae Sinica, English Series, Volume 33 (2017) no. 3, p. 679 | DOI:10.1007/s10255-017-0690-1
- Nonlocal nonlinear advection-diffusion equations, Chinese Annals of Mathematics, Series B, Volume 38 (2017) no. 1, p. 281 | DOI:10.1007/s11401-016-1071-4
- Regularity Criterion and Energy Conservation for the Supercritical Quasi-geostrophic Equation, Journal of Mathematical Fluid Mechanics, Volume 19 (2017) no. 2, p. 191 | DOI:10.1007/s00021-017-0320-y
- Global Regularity for Several Incompressible Fluid Models with Partial Dissipation, Journal of Mathematical Fluid Mechanics, Volume 19 (2017) no. 3, p. 423 | DOI:10.1007/s00021-016-0291-4
- On the regularity of weak solutions for a modified dissipative quasi-geostrophic equation, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, Volume 111 (2017) no. 1, p. 89 | DOI:10.1007/s13398-016-0279-1
- Global regularity for the supercritical active scalars, Zeitschrift für angewandte Mathematik und Physik, Volume 68 (2017) no. 3 | DOI:10.1007/s00033-017-0810-z
- The optimal temporal decay estimates for the fractional power dissipative equation in negative Besov spaces, Journal of Mathematical Physics, Volume 57 (2016) no. 5 | DOI:10.1063/1.4949769
- Bifurcating steady-state solutions of the dissipative quasi-geostrophic equation in Lagrangian formulation, Nonlinearity, Volume 29 (2016) no. 10, p. 3132 | DOI:10.1088/0951-7715/29/10/3132
- Remarks on the logarithmical regularity criterion of the supercritical surface quasi-geostrophic equation in Morrey spaces, Applied Mathematics Letters, Volume 43 (2015), p. 80 | DOI:10.1016/j.aml.2014.11.012
- Regularity for a Local–Nonlocal Transmission Problem, Archive for Rational Mechanics and Analysis, Volume 217 (2015) no. 3, p. 1103 | DOI:10.1007/s00205-015-0851-4
- On the Serrin’s regularity criterion for the β-generalized dissipative surface quasi-geostrophic equation, Chinese Annals of Mathematics, Series B, Volume 36 (2015) no. 6, p. 947 | DOI:10.1007/s11401-015-0932-6
- Long Time Dynamics of Forced Critical SQG, Communications in Mathematical Physics, Volume 335 (2015) no. 1, p. 93 | DOI:10.1007/s00220-014-2129-3
- Eventual Regularity of the Two-Dimensional Boussinesq Equations with Supercritical Dissipation, Journal of Nonlinear Science, Volume 25 (2015) no. 1, p. 37 | DOI:10.1007/s00332-014-9220-y
- Absence of Anomalous Dissipation of Energy in Forced Two Dimensional Fluid Equations, Archive for Rational Mechanics and Analysis, Volume 212 (2014) no. 3, p. 875 | DOI:10.1007/s00205-013-0708-7
- The well-posedness of the surface quasi-geostrophic equations in the Besov–Morrey spaces, Nonlinear Analysis: Theory, Methods Applications, Volume 92 (2013), p. 60 | DOI:10.1016/j.na.2013.06.019
- Remarks on the weak–strong uniqueness for the 2D quasi-geostrophic equation in BMO space, Applied Mathematics Letters, Volume 25 (2012) no. 10, p. 1470 | DOI:10.1016/j.aml.2011.12.026
- New Numerical Results for the Surface Quasi-Geostrophic Equation, Journal of Scientific Computing, Volume 50 (2012) no. 1, p. 1 | DOI:10.1007/s10915-011-9471-9
- On the regularity criteria of a surface quasi-geostrophic equation, Nonlinear Analysis: Theory, Methods Applications, Volume 75 (2012) no. 13, p. 4950 | DOI:10.1016/j.na.2012.04.010
- On the weak-strong uniqueness of the dissipative surface quasi-geostrophic equation, Nonlinearity, Volume 25 (2012) no. 5, p. 1513 | DOI:10.1088/0951-7715/25/5/1513
- Inviscid Models Generalizing the Two-dimensional Euler and the Surface Quasi-geostrophic Equations, Archive for Rational Mechanics and Analysis, Volume 202 (2011) no. 1, p. 35 | DOI:10.1007/s00205-011-0411-5
Cité par 30 documents. Sources : Crossref