@article{AIHPC_2005__22_4_403_0, author = {Lin, Tai-Chia and Wei, Juncheng}, title = {Spikes in two coupled nonlinear {Schr\"odinger} equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {403--439}, publisher = {Elsevier}, volume = {22}, number = {4}, year = {2005}, doi = {10.1016/j.anihpc.2004.03.004}, mrnumber = {2145720}, zbl = {1080.35143}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2004.03.004/} }
TY - JOUR AU - Lin, Tai-Chia AU - Wei, Juncheng TI - Spikes in two coupled nonlinear Schrödinger equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 403 EP - 439 VL - 22 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2004.03.004/ DO - 10.1016/j.anihpc.2004.03.004 LA - en ID - AIHPC_2005__22_4_403_0 ER -
%0 Journal Article %A Lin, Tai-Chia %A Wei, Juncheng %T Spikes in two coupled nonlinear Schrödinger equations %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 403-439 %V 22 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2004.03.004/ %R 10.1016/j.anihpc.2004.03.004 %G en %F AIHPC_2005__22_4_403_0
Lin, Tai-Chia; Wei, Juncheng. Spikes in two coupled nonlinear Schrödinger equations. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 4, pp. 403-439. doi : 10.1016/j.anihpc.2004.03.004. https://www.numdam.org/articles/10.1016/j.anihpc.2004.03.004/
[1] Equilibria with many nuclei for the Cahn-Hilliard equation, J. Differential Equations 160 (2000) 283-356. | MR | Zbl
, ,[2] Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability, Adv. Differential Equations 4 (1999) 1-69. | MR | Zbl
, , ,[3] Nehari's problem and competing species system, Ann. Inst. H. Poincaré 19 (6) (2002) 871-888. | Numdam | MR | Zbl
, , ,[4] Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J. 48 (3) (1999) 883-898. | MR | Zbl
, ,[5] On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal. 31 (1999) 63-79. | MR | Zbl
, , ,[6] On the role of distance function in some singularly perturbed problems, Comm. Partial Differential Equations 25 (2000) 155-177. | MR | Zbl
, , ,[7] Multiple peak solutions for some singular perturbation problems, Cal. Var. Partial Differential Equations 10 (2000) 119-134. | MR | Zbl
, , ,[8] Dynamics of collapsing and exploding Bose-Einstein condensates, Nature 19 (412) (2001) 295-299.
, , , , , ,[9] On the location of spike s of solutions with two sharp layers for a singularly perturbed semilinear Dirichlet problem, J. Differential Equations 157 (1999) 82-101. | MR | Zbl
, ,[10] Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math. 189 (1999) 241-262. | MR | Zbl
, ,[11] Existence and non-existence results for semilinear problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A 93 (1982) 1-14. | MR | Zbl
, ,[12] Hartree-Fock theory for double condensates, Phys. Rev. Lett. 78 (1997) 3594-3597.
, , , ,
[13] Symmetry of positive solutions of nonlinear elliptic equations in
[14] Multiple interior spike solutions for some singular perturbed Neumann problems, J. Differential Equations 158 (1999) 1-27. | MR | Zbl
, ,[15] On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math. 52 (2000) 522-538. | MR | Zbl
, ,[16] Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 249-289. | Numdam | MR | Zbl
, , ,[17] Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Cal. Var. Partial Differential Equations 11 (2000) 143-175. | MR | Zbl
, , ,[18] Radio-frequency spectroscopy of ultracold fermions, Science 300 (2003) 1723-1726.
, , , , , , , , ,[19] Dynamics of component separation in a binary mixture of Bose-Einstein condensates, Phys. Rev. Lett. 81 (1998) 1539-1542.
, , , , ,
[20] Uniqueness of positive solutions of
[21] On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations 23 (1998) 487-545. | MR | Zbl
,[22] The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math. 51 (1998) 1445-1490. | MR | Zbl
, ,[23] Analysis, American Mathematical Society, 1996. | Zbl
, ,[24] Production of two overlapping Bose-Einstein condensates by sympathetic cooling, Phys. Rev. Lett. 78 (1997) 586-589.
, , , , ,[25] Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc. 45 (1998) 9-18. | MR | Zbl
,[26] On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math. 41 (1991) 819-851. | MR | Zbl
, ,[27] Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993) 247-281. | MR | Zbl
, ,[28] On the location and profile of spike-Layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995) 731-768. | MR | Zbl
, ,[29] Phase separation of Bose-Einstein condensates, Phys. Rev. Lett. 81 (1998) 5718-5721.
,[30] Symmetry properties in systems of semilinear elliptic equations, J. Differential Equations 42 (3) (1981) 400-413. | MR | Zbl
,[31] On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations 129 (1996) 315-333. | MR | Zbl
,[32] On the interior spike layer solutions to a singularly perturbed Neumann problem, Tohoku Math. J. 50 (1998) 159-178. | MR | Zbl
,[33] On the effect of the domain geometry in a singularly perturbed Dirichlet problem, Differential Integral Equations 13 (2000) 15-45. | MR | Zbl
,[34] On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Differential Equations 134 (1997) 104-133. | MR | Zbl
,[35] Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 459-492. | Numdam | MR | Zbl
, ,[36] Multiple boundary spike solutions for a wide class of singular perturbation problems, J. London Math. Soc. 59 (1999) 585-606. | MR | Zbl
, ,- Infinitely Many Sign-Changing Solutions for Coupled Schrödinger System, Asymptotic Analysis (2025) | DOI:10.1177/09217134241312535
- Standing waves for two-component elliptic system with critical growth in
: the attractive case, Mathematische Zeitschrift, Volume 309 (2025) no. 2 | DOI:10.1007/s00209-024-03660-z - Static States for Rotating Two‐Component Bose–Einstein Condensates, Studies in Applied Mathematics, Volume 154 (2025) no. 1 | DOI:10.1111/sapm.70013
- On a Schrödinger system with shrinking regions of attraction, Zeitschrift für angewandte Mathematik und Physik, Volume 76 (2025) no. 1 | DOI:10.1007/s00033-024-02404-7
- Configuration spaces and multiple positive solutions to a singularly perturbed elliptic system, Boletín de la Sociedad Matemática Mexicana, Volume 30 (2024) no. 2 | DOI:10.1007/s40590-024-00610-x
- Cross-invariant sets of the coupled nonlinear Schrödinger system with harmonic potentials, Discrete and Continuous Dynamical Systems - B, Volume 0 (2024) no. 0, p. 0 | DOI:10.3934/dcdsb.2024186
- New vector solutions for the cubic nonlinear schrödinger system, Journal d'Analyse Mathématique, Volume 153 (2024) no. 1, p. 247 | DOI:10.1007/s11854-023-0315-y
- The existence of positive solutions for a critically coupled Schrödinger system in a ball of R3, Journal of Mathematical Analysis and Applications, Volume 538 (2024) no. 2, p. 128424 | DOI:10.1016/j.jmaa.2024.128424
- Limit Behavior of Ground States of 2D Binary BECs in Steep Potential Wells, Acta Mathematica Scientia, Volume 43 (2023) no. 1, p. 409 | DOI:10.1007/s10473-023-0123-6
- Multi-Peak Solutions for Coupled Nonlinear Schrödinger Systems in Low Dimensions, Applied Mathematics Optimization, Volume 88 (2023) no. 1 | DOI:10.1007/s00245-023-09974-4
- Nonlinear Schrödinger systems with trapping potentials for mixed attractive and repulsive interactions, Calculus of Variations and Partial Differential Equations, Volume 62 (2023) no. 7 | DOI:10.1007/s00526-023-02529-z
- Coupled and uncoupled sign-changing spikes of singularly perturbed elliptic systems, Communications in Contemporary Mathematics, Volume 25 (2023) no. 09 | DOI:10.1142/s0219199722500481
- Existence and non-degeneracy of positive multi-bubbling solutions to critical elliptic systems of Hamiltonian type, Journal of Differential Equations, Volume 355 (2023), p. 16 | DOI:10.1016/j.jde.2023.01.024
- Multiple mixed interior and boundary peaks synchronized solutions for nonlinear coupled elliptic systems, Journal of Mathematical Physics, Volume 64 (2023) no. 5 | DOI:10.1063/5.0120617
- Energy estimates for seminodal solutions to an elliptic system with mixed couplings, Nonlinear Differential Equations and Applications NoDEA, Volume 30 (2023) no. 1 | DOI:10.1007/s00030-022-00817-9
- Existence of solutions for a coupled Schrödinger equations with critical exponent, Electronic Research Archive, Volume 30 (2022) no. 7, p. 2730 | DOI:10.3934/era.2022140
- Positive least energy solutions for k-coupled Schrödinger system with critical exponent: the higher dimension and cooperative case, Journal of Fixed Point Theory and Applications, Volume 24 (2022) no. 1 | DOI:10.1007/s11784-021-00923-8
- Existence and multiplicity of nontrivial solutions of weakly coupled nonlinear Hartree type elliptic system, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 2 | DOI:10.1007/s00033-022-01707-x
- Mass Concentration and Asymptotic Uniqueness of Ground State for 3-Component BEC with External Potential in ℝ2, Advanced Nonlinear Studies, Volume 21 (2021) no. 3, p. 593 | DOI:10.1515/ans-2021-2131
- Existence of multiple nontrivial solutions of the nonlinear Schrödinger-Korteweg-de Vries type system, Advances in Nonlinear Analysis, Volume 11 (2021) no. 1, p. 636 | DOI:10.1515/anona-2021-0214
- Ground states of spin-1 BEC with attractive mean-field interaction trapped in harmonic potential in
, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 4 | DOI:10.1007/s00526-021-02015-4 - On a critical Schrödinger system involving Hardy terms, Journal of Fixed Point Theory and Applications, Volume 23 (2021) no. 4 | DOI:10.1007/s11784-021-00891-z
- Partly clustering solutions of nonlinear Schrödinger systems with mixed interactions, Journal of Functional Analysis, Volume 280 (2021) no. 12, p. 108987 | DOI:10.1016/j.jfa.2021.108987
- Multiple nodal solutions having shared componentwise nodal numbers for coupled Schrödinger equations, Journal of Functional Analysis, Volume 280 (2021) no. 7, p. 108872 | DOI:10.1016/j.jfa.2020.108872
- Locations of spikes for linearly coupled Schrödinger systems, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 18, p. 14915 | DOI:10.1002/mma.7752
- Nonlinear Schrödinger systems with mixed interactions: locally minimal energy vector solutions, Nonlinearity, Volume 34 (2021) no. 9, p. 6473 | DOI:10.1088/1361-6544/ac155a
- On a Coupled Schrödinger System with Stein–Weiss Type Convolution Part, The Journal of Geometric Analysis, Volume 31 (2021) no. 10, p. 10263 | DOI:10.1007/s12220-021-00645-w
- Infinitely Many Solitary Waves Due to the Second-Harmonic Generation in Quadratic Media, Acta Mathematica Scientia, Volume 40 (2020) no. 1, p. 16 | DOI:10.1007/s10473-020-0102-3
- Infinitely many Solutions with Peaks for a Fractional System in ℝN, Acta Mathematica Scientia, Volume 40 (2020) no. 2, p. 389 | DOI:10.1007/s10473-020-0207-5
- Positive vortex solutions and phase separation for coupled Schrodinger system with singular potential, Electronic Journal of Differential Equations, Volume 2020 (2020) no. 01-132, p. 108 | DOI:10.58997/ejde.2020.108
- Ground states of nonlinear Schrödinger systems with mixed couplings, Journal de Mathématiques Pures et Appliquées, Volume 141 (2020), p. 50 | DOI:10.1016/j.matpur.2020.07.012
- Sign Changing Solutions for Coupled Critical Elliptic Equations, Journal of Function Spaces, Volume 2020 (2020), p. 1 | DOI:10.1155/2020/9841640
- Multiplicity of localized solutions of nonlinear Schrödinger systems for infinite attractive case, Journal of Mathematical Analysis and Applications, Volume 491 (2020) no. 2, p. 124358 | DOI:10.1016/j.jmaa.2020.124358
- A Liouville's theorem for a fractional elliptic system with indefinite nonlinearities, Journal of Mathematical Analysis and Applications, Volume 492 (2020) no. 2, p. 124471 | DOI:10.1016/j.jmaa.2020.124471
- Uniqueness of positive solutions to some Schrödinger systems, Nonlinear Analysis, Volume 195 (2020), p. 111750 | DOI:10.1016/j.na.2020.111750
- Positive vector solutions for a Schrödinger system with external source terms, Nonlinear Differential Equations and Applications NoDEA, Volume 27 (2020) no. 1 | DOI:10.1007/s00030-019-0608-0
- Many synchronized vector solutions for a Bose–Einstein system, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 150 (2020) no. 6, p. 3293 | DOI:10.1017/prm.2019.75
- Partial symmetry of normalized solutions for a doubly coupled Schrödinger system, SN Partial Differential Equations and Applications, Volume 1 (2020) no. 5 | DOI:10.1007/s42985-020-00016-0
- Existence and bifurcation of nontrivial solutions for the coupled nonlinear Schrödinger–Korteweg–de Vries system, Zeitschrift für angewandte Mathematik und Physik, Volume 71 (2020) no. 1 | DOI:10.1007/s00033-020-1256-2
- Ground States of a 𝐾-Component Critical System with Linear and Nonlinear Couplings: The Attractive Case, Advanced Nonlinear Studies, Volume 19 (2019) no. 3, p. 595 | DOI:10.1515/ans-2019-2049
- Spikes of the two-component elliptic system in
R 4 with the critical Sobolev exponent, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 1 | DOI:10.1007/s00526-018-1479-7 - Spiked vector solutions of coupled Schrödinger systems with critical exponent and solutions concentrating on spheres, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 3 | DOI:10.1007/s00526-019-1540-1
- Sign-changing solutions of an elliptic system with critical exponent in dimension N = 5, Journal d'Analyse Mathématique, Volume 137 (2019) no. 1, p. 231 | DOI:10.1007/s11854-018-0071-6
- Optimal number of solutions for nonlinear coupled Schrödinger systems, part I: Synchronized case, Journal of Differential Equations, Volume 266 (2019) no. 6, p. 3601 | DOI:10.1016/j.jde.2018.09.018
- Ground states of two-component attractive Bose–Einstein condensates I: Existence and uniqueness, Journal of Functional Analysis, Volume 276 (2019) no. 1, p. 183 | DOI:10.1016/j.jfa.2018.09.015
- Existence and nonexistence of bound state solutions for Schrödinger systems with linear and nonlinear couplings, Journal of Mathematical Analysis and Applications, Volume 475 (2019) no. 1, p. 350 | DOI:10.1016/j.jmaa.2019.02.045
- Vector solutions for two coupled Schrödinger equations on Riemannian manifolds, Journal of Mathematical Physics, Volume 60 (2019) no. 5 | DOI:10.1063/1.5100021
- Existence and multiplicity of positive solutions for fractional Laplacian systems with nonlinear coupling, Journal of Mathematical Physics, Volume 60 (2019) no. 8 | DOI:10.1063/1.5087755
- Semiclassical asymptotic behavior of ground state for the two‐component Hartree system, Mathematical Methods in the Applied Sciences, Volume 42 (2019) no. 18, p. 7135 | DOI:10.1002/mma.5820
- Positive ground states for coupled nonlinear Choquard equations involving Hardy–Littlewood–Sobolev critical exponent, Nonlinear Analysis: Real World Applications, Volume 48 (2019), p. 182 | DOI:10.1016/j.nonrwa.2019.01.015
- Localized solutions of nonlinear Schrödinger systems with critical frequency for infinite attractive case, Nonlinear Differential Equations and Applications NoDEA, Volume 26 (2019) no. 5 | DOI:10.1007/s00030-019-0578-2
- Formation of Radial Patterns via Mixed Attractive and Repulsive Interactions for Schrödinger Systems, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 2, p. 1514 | DOI:10.1137/18m1196789
- Number of synchronized and segregated interior spike solutions for nonlinear coupled elliptic systems with continuous potentials, Science China Mathematics, Volume 62 (2019) no. 3, p. 509 | DOI:10.1007/s11425-017-9098-9
- Existence and phase separation of entire solutions to a pure critical competitive elliptic system, Calculus of Variations and Partial Differential Equations, Volume 57 (2018) no. 1 | DOI:10.1007/s00526-017-1283-9
- Positive solutions for critically coupled Schrödinger systems with attractive interactions, Discrete Continuous Dynamical Systems - A, Volume 38 (2018) no. 2, p. 485 | DOI:10.3934/dcds.2018022
- Blow-up behavior of ground states for a nonlinear Schrödinger system with attractive and repulsive interactions, Journal of Differential Equations, Volume 264 (2018) no. 2, p. 1411 | DOI:10.1016/j.jde.2017.09.039
- Sign-changing semi-classical solutions of the Brezís–Nirenberg problems with jump nonlinearities in high dimensions, Journal of Mathematical Analysis and Applications, Volume 461 (2018) no. 1, p. 7 | DOI:10.1016/j.jmaa.2018.01.006
- Segregated vector solutions with multi-scale spikes for nonlinear coupled elliptic systems, Journal of Mathematical Analysis and Applications, Volume 464 (2018) no. 1, p. 1 | DOI:10.1016/j.jmaa.2018.02.019
- Least energy sign-changing solutions of the singularly perturbed Brezis–Nirenberg problem, Nonlinear Analysis, Volume 171 (2018), p. 85 | DOI:10.1016/j.na.2018.01.013
- The existence, uniqueness and nonexistence of the ground state to theN-coupled Schrödinger systems in
, Nonlinearity, Volume 31 (2018) no. 1, p. 314 | DOI:10.1088/1361-6544/aa8ca9 - On the semiclassical solutions of a two-component elliptic system in
R 4 with trapping potentials and Sobolev critical exponent: the repulsive case, Zeitschrift für angewandte Mathematik und Physik, Volume 69 (2018) no. 5 | DOI:10.1007/s00033-018-1006-x - On a two-component Bose–Einstein condensate with steep potential wells, Annali di Matematica Pura ed Applicata (1923 -), Volume 196 (2017) no. 5, p. 1695 | DOI:10.1007/s10231-017-0635-6
- Spike vector solutions for nonlinear Schrödinger systems with magnetic fields, Applicable Analysis, Volume 96 (2017) no. 7, p. 1077 | DOI:10.1080/00036811.2016.1178241
- Positive solutions for coupled Schrödinger system with critical exponent in R N
( N ≥ 5 ), Boundary Value Problems, Volume 2017 (2017) no. 1 | DOI:10.1186/s13661-017-0834-5 - Standing waves for a coupled nonlinear Hartree equations with nonlocal interaction, Calculus of Variations and Partial Differential Equations, Volume 56 (2017) no. 6 | DOI:10.1007/s00526-017-1268-8
- Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential, Discrete Continuous Dynamical Systems - A, Volume 37 (2017) no. 3, p. 1707 | DOI:10.3934/dcds.2017071
- Spike-Layer Simulation for Steady-State Coupled Schrödinger Equations, East Asian Journal on Applied Mathematics, Volume 7 (2017) no. 3, p. 566 | DOI:10.4208/eajam.030616.130517a
- Pattern formation via mixed interactions for coupled Schrödinger equations under Neumann boundary condition, Journal of Fixed Point Theory and Applications, Volume 19 (2017) no. 1, p. 559 | DOI:10.1007/s11784-016-0365-1
- Number of synchronized and segregated interior spike solutions for nonlinear coupled elliptic systems, Journal of Mathematical Analysis and Applications, Volume 448 (2017) no. 2, p. 1079 | DOI:10.1016/j.jmaa.2016.11.044
- On the existence of positive least energy solutions for a coupled Schrödinger system with critical exponent, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 4, p. 1032 | DOI:10.1002/mma.4034
- Multi-bump bound states for a Schrödinger system via Lyapunov–Schmidt Reduction, Nonlinear Differential Equations and Applications NoDEA, Volume 24 (2017) no. 6 | DOI:10.1007/s00030-017-0489-z
- Existence of positive solutions to semilinear elliptic systems with supercritical growth, Communications in Partial Differential Equations, Volume 41 (2016) no. 7, p. 1029 | DOI:10.1080/03605302.2016.1190376
- Pattern formation via mixed attractive and repulsive interactions for nonlinear Schrödinger systems, Journal de Mathématiques Pures et Appliquées, Volume 106 (2016) no. 3, p. 477 | DOI:10.1016/j.matpur.2016.03.001
- Normalized solutions for a system of coupled cubic Schrödinger equations on R3, Journal de Mathématiques Pures et Appliquées, Volume 106 (2016) no. 4, p. 583 | DOI:10.1016/j.matpur.2016.03.004
- Standing waves of a weakly coupled Schrödinger system with distinct potential functions, Journal of Differential Equations, Volume 260 (2016) no. 2, p. 1830 | DOI:10.1016/j.jde.2015.09.052
- New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms, Journal of Differential Equations, Volume 261 (2016) no. 1, p. 505 | DOI:10.1016/j.jde.2016.03.015
- Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth, Journal of Differential Equations, Volume 261 (2016) no. 12, p. 7194 | DOI:10.1016/j.jde.2016.09.018
- Infinitely many solutions for nonlinear Schrödinger systems with magnetic potentials in R3, Mathematical Methods in the Applied Sciences, Volume 39 (2016) no. 6, p. 1452 | DOI:10.1002/mma.3581
- Positive solutions for Schrödinger system with asymptotically periodic potentials, Nonlinear Analysis, Volume 134 (2016), p. 215 | DOI:10.1016/j.na.2016.01.011
- A degree theory framework for semilinear elliptic systems, Proceedings of the American Mathematical Society, Volume 144 (2016) no. 9, p. 3731 | DOI:10.1090/proc/13166
- Segregated vector solutions for nonlinear schrödinger systems in ℝ2, Acta Mathematica Scientia, Volume 35 (2015) no. 2, p. 383 | DOI:10.1016/s0252-9602(15)60010-8
- Existence and uniqueness of positive solutions to three coupled nonlinear Schrödinger equations, Acta Mathematicae Applicatae Sinica, English Series, Volume 31 (2015) no. 4, p. 1021 | DOI:10.1007/s10255-015-0524-y
- Multiple mixed states of nodal solutions for nonlinear Schrödinger systems, Calculus of Variations and Partial Differential Equations, Volume 52 (2015) no. 3-4, p. 565 | DOI:10.1007/s00526-014-0724-y
- On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition, Calculus of Variations and Partial Differential Equations, Volume 53 (2015) no. 3-4, p. 689 | DOI:10.1007/s00526-014-0764-3
- Multiple positive solutions for Schrödinger systems with mixed couplings, Calculus of Variations and Partial Differential Equations, Volume 54 (2015) no. 2, p. 1373 | DOI:10.1007/s00526-015-0828-z
- Semi-classical standing waves for nonlinear Schrödinger systems, Calculus of Variations and Partial Differential Equations, Volume 54 (2015) no. 2, p. 2287 | DOI:10.1007/s00526-015-0866-6
- On the least energy sign-changing solutions for a nonlinear elliptic system, Discrete Continuous Dynamical Systems - A, Volume 35 (2015) no. 5, p. 2151 | DOI:10.3934/dcds.2015.35.2151
- Spike vector solutions for some coupled nonlinear Schrödinger equations, Discrete and Continuous Dynamical Systems, Volume 36 (2015) no. 4, p. 2205 | DOI:10.3934/dcds.2016.36.2205
- On elliptic systems with Sobolev critical exponent, Discrete and Continuous Dynamical Systems, Volume 36 (2015) no. 6, p. 3357 | DOI:10.3934/dcds.2016.36.3357
- Positive ground state solutions and multiple nontrivial solutions for coupled critical elliptic systems, Journal of Mathematical Analysis and Applications, Volume 427 (2015) no. 1, p. 88 | DOI:10.1016/j.jmaa.2015.01.073
- Multi-peak solutions for nonlinear Schrödinger systems with magnetic potentials inR3, Journal of Mathematical Analysis and Applications, Volume 431 (2015) no. 2, p. 1054 | DOI:10.1016/j.jmaa.2015.06.013
- Liouville type theorems for Schrödinger systems, Science China Mathematics, Volume 58 (2015) no. 1, p. 179 | DOI:10.1007/s11425-014-4925-9
- A perturbation method for k-mixtures of Bose–Einstein condensates, Zeitschrift für angewandte Mathematik und Physik, Volume 66 (2015) no. 3, p. 1023 | DOI:10.1007/s00033-014-0468-8
- Segregated peak solutions of coupled Schrödinger systems with Neumann boundary conditions, Discrete Continuous Dynamical Systems - A, Volume 34 (2014) no. 12, p. 5299 | DOI:10.3934/dcds.2014.34.5299
- Segregated vector solutions for a class of Bose–Einstein systems, Journal of Differential Equations, Volume 257 (2014) no. 1, p. 207 | DOI:10.1016/j.jde.2014.03.019
- Monotonicity and nonexistence results to cooperative systems in the half space, Journal of Functional Analysis, Volume 266 (2014) no. 2, p. 1088 | DOI:10.1016/j.jfa.2013.08.021
- Multi-peak solutions to coupled Schrödinger systems with Neumann boundary conditions, Journal of Mathematical Analysis and Applications, Volume 409 (2014) no. 2, p. 684 | DOI:10.1016/j.jmaa.2013.07.053
- Positive least energy solutions for a coupled Schrödinger system with critical exponent, Journal of Mathematical Analysis and Applications, Volume 417 (2014) no. 1, p. 308 | DOI:10.1016/j.jmaa.2014.03.028
- Positive solutions to integral systems with weight and Bessel potentials, Journal of Mathematical Analysis and Applications, Volume 418 (2014) no. 1, p. 264 | DOI:10.1016/j.jmaa.2014.03.076
- Existence of semiclassical states for a coupled Schrödinger system with potentials and nonlocal nonlinearities, Zeitschrift für angewandte Mathematik und Physik, Volume 65 (2014) no. 1, p. 41 | DOI:10.1007/s00033-013-0317-1
- On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 30 (2013) no. 1, p. 1 | DOI:10.1016/j.anihpc.2012.05.002
- Segregated and Synchronized Vector Solutions for Nonlinear Schrödinger Systems, Archive for Rational Mechanics and Analysis, Volume 208 (2013) no. 1, p. 305 | DOI:10.1007/s00205-012-0598-0
- Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system, Communications on Pure Applied Analysis, Volume 12 (2013) no. 6, p. 2685 | DOI:10.3934/cpaa.2013.12.2685
- Positive solutions of integral systems involving Bessel potentials, Communications on Pure Applied Analysis, Volume 12 (2013) no. 6, p. 2721 | DOI:10.3934/cpaa.2013.12.2721
- Bifurcation results on positive solutions of an indefinite nonlinear elliptic system, Discrete Continuous Dynamical Systems - A, Volume 33 (2013) no. 1, p. 335 | DOI:10.3934/dcds.2013.33.335
- Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations, Discrete Continuous Dynamical Systems - A, Volume 33 (2013) no. 7, p. 2911 | DOI:10.3934/dcds.2013.33.2911
- On the multiple spike solutions for singularly perturbed elliptic systems, Discrete Continuous Dynamical Systems - B, Volume 18 (2013) no. 1, p. 237 | DOI:10.3934/dcdsb.2013.18.237
- Multiple sign-changing and semi-nodal solutions for coupled Schrödinger equations, Journal of Differential Equations, Volume 255 (2013) no. 11, p. 4289 | DOI:10.1016/j.jde.2013.08.009
- Global existence for a coupled system of Schrödinger equations with power-type nonlinearities, Journal of Mathematical Physics, Volume 54 (2013) no. 1 | DOI:10.1063/1.4774149
- Existence and symmetry results for competing variational systems, Nonlinear Differential Equations and Applications NoDEA, Volume 20 (2013) no. 3, p. 715 | DOI:10.1007/s00030-012-0176-z
- Bifurcation diagrams of coupled Schrödinger equations, Applied Mathematics and Computation, Volume 219 (2012) no. 8, p. 3646 | DOI:10.1016/j.amc.2012.09.061
- Positive Least Energy Solutions and Phase Separation for Coupled Schrödinger Equations with Critical Exponent, Archive for Rational Mechanics and Analysis, Volume 205 (2012) no. 2, p. 515 | DOI:10.1007/s00205-012-0513-8
- Multiple positive solutions for semilinear elliptic systems involving subcritical nonlinearities in R N, Boundary Value Problems, Volume 2012 (2012) no. 1 | DOI:10.1186/1687-2770-2012-118
- Integrability and asymptotics of positive solutions of a γ-Laplace system, Journal of Differential Equations, Volume 252 (2012) no. 3, p. 2739 | DOI:10.1016/j.jde.2011.10.009
- Multi-bump bound states for a system of nonlinear Schrödinger equations, Journal of Differential Equations, Volume 252 (2012) no. 5, p. 3630 | DOI:10.1016/j.jde.2011.11.017
- Multibump bound states for quasilinear Schrödinger systems with critical frequency, Journal of Fixed Point Theory and Applications, Volume 12 (2012) no. 1-2, p. 135 | DOI:10.1007/s11784-012-0092-1
- Two coupled nonlinear Schrödinger equations involving a non-constant coupling coefficient, Nonlinear Analysis: Theory, Methods Applications, Volume 75 (2012) no. 13, p. 4766 | DOI:10.1016/j.na.2012.03.027
- Rotating multicomponent Bose–Einstein condensates, Nonlinear Differential Equations and Applications NoDEA, Volume 19 (2012) no. 1, p. 49 | DOI:10.1007/s00030-011-0117-2
- A local mountain pass type result for a system of nonlinear Schrödinger equations, Calculus of Variations and Partial Differential Equations, Volume 40 (2011) no. 3-4, p. 449 | DOI:10.1007/s00526-010-0347-x
- The spatial behavior of rotating two-component Bose–Einstein condensates, Journal of Functional Analysis, Volume 261 (2011) no. 6, p. 1711 | DOI:10.1016/j.jfa.2011.05.017
- Spike-layer solutions to singularly perturbed semilinear systems of coupled Schrödinger equations, Journal of Mathematical Analysis and Applications, Volume 377 (2011) no. 1, p. 336 | DOI:10.1016/j.jmaa.2010.11.001
- Global minimizers of coexistence for rotating -component Bose–Einstein condensates, Nonlinear Analysis: Real World Applications, Volume 12 (2011) no. 5, p. 2567 | DOI:10.1016/j.nonrwa.2011.03.006
- On ground state of spinor Bose–Einstein condensates, Nonlinear Differential Equations and Applications NoDEA, Volume 18 (2011) no. 4, p. 427 | DOI:10.1007/s00030-011-0102-9
- Rotating Two-Component Bose-Einstein Condensates, Acta Applicandae Mathematicae, Volume 110 (2010) no. 1, p. 367 | DOI:10.1007/s10440-008-9417-x
- Bose–Einstein Condensates with Non-classical Vortex, Acta Applicandae Mathematicae, Volume 110 (2010) no. 3, p. 1137 | DOI:10.1007/s10440-009-9498-1
- Positive solutions for weakly coupled nonlinear elliptic systems, Acta Mathematica Scientia, Volume 30 (2010) no. 5, p. 1577 | DOI:10.1016/s0252-9602(10)60151-8
- Symmetry results for decay solutions of elliptic systems in the whole space, Advances in Mathematics, Volume 225 (2010) no. 6, p. 3052 | DOI:10.1016/j.aim.2010.05.022
- A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 27 (2010) no. 3, p. 953 | DOI:10.1016/j.anihpc.2010.01.009
- A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calculus of Variations and Partial Differential Equations, Volume 37 (2010) no. 3-4, p. 345 | DOI:10.1007/s00526-009-0265-y
- Blow-up Theory for the Coupled L 2-Critical Nonlinear Schrödinger System in the Plane, Milan Journal of Mathematics, Volume 78 (2010) no. 2, p. 591 | DOI:10.1007/s00032-010-0131-6
- Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Mathematica Scientia, Volume 29 (2009) no. 4, p. 949 | DOI:10.1016/s0252-9602(09)60079-5
- Sharp thresholds of two-components Bose–Einstein condensates, Computers Mathematics with Applications, Volume 58 (2009) no. 8, p. 1608 | DOI:10.1016/j.camwa.2009.07.022
- Phase separation of two-component Bose–Einstein condensates, Journal of Mathematical Physics, Volume 50 (2009) no. 10 | DOI:10.1063/1.3243875
- Radial Solutions and Phase Separation in a System of Two Coupled Schrödinger Equations, Archive for Rational Mechanics and Analysis, Volume 190 (2008) no. 1, p. 83 | DOI:10.1007/s00205-008-0121-9
- Existence and concentration of ground states of coupled nonlinear Schrödinger equations with bounded potentials, Chinese Annals of Mathematics, Series B, Volume 29 (2008) no. 3, p. 247 | DOI:10.1007/s11401-007-0104-4
- Multiple Bound States of Nonlinear Schrödinger Systems, Communications in Mathematical Physics, Volume 282 (2008) no. 3, p. 721 | DOI:10.1007/s00220-008-0546-x
- Two-component Bose–Einstein condensates, Journal of Mathematical Analysis and Applications, Volume 348 (2008) no. 1, p. 274 | DOI:10.1016/j.jmaa.2008.07.033
- Sharp thresholds of blow-up and global existence for the coupled nonlinear Schrödinger system, Journal of Mathematical Physics, Volume 49 (2008) no. 6 | DOI:10.1063/1.2939238
- Asymptotic behaviour of solutions of planar elliptic systems with strong competition, Nonlinearity, Volume 21 (2008) no. 2, p. 305 | DOI:10.1088/0951-7715/21/2/006
- Uniqueness of Positive Bound States to Schrödinger Systems with Critical Exponents, SIAM Journal on Mathematical Analysis, Volume 40 (2008) no. 3, p. 1049 | DOI:10.1137/080712301
- Least Energy Solitary Waves for a System of Nonlinear Schrödinger Equations in
, Communications in Mathematical Physics, Volume 271 (2007) no. 1, p. 199 | DOI:10.1007/s00220-006-0179-x - Ground State of N Coupled Nonlinear Schrodinger Equations in
, Communications in Mathematical Physics, Volume 277 (2007) no. 2, p. 573 | DOI:10.1007/s00220-007-0365-5 - Existence and concentration of ground states of coupled nonlinear Schrödinger equations, Journal of Mathematical Analysis and Applications, Volume 332 (2007) no. 2, p. 846 | DOI:10.1016/j.jmaa.2006.09.083
- Half-Skyrmions and spike-vortex solutions of two-component nonlinear Schrödinger systems, Journal of Mathematical Physics, Volume 48 (2007) no. 5 | DOI:10.1063/1.2722559
- Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials, Journal of Differential Equations, Volume 229 (2006) no. 2, p. 538 | DOI:10.1016/j.jde.2005.12.011
- Symbiotic bright solitary wave solutions of coupled nonlinear Schrödinger equations, Nonlinearity, Volume 19 (2006) no. 12, p. 2755 | DOI:10.1088/0951-7715/19/12/002
- Solitary and self-similar solutions of two-component system of nonlinear Schrödinger equations, Physica D: Nonlinear Phenomena, Volume 220 (2006) no. 2, p. 99 | DOI:10.1016/j.physd.2006.07.009
Cité par 147 documents. Sources : Crossref