@article{AIHPC_2002__19_6_871_0, author = {Conti, M. and Terracini, S. and Verzini, G.}, title = {Nehari's problem and competing species systems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {871--888}, publisher = {Elsevier}, volume = {19}, number = {6}, year = {2002}, mrnumber = {1939088}, zbl = {1090.35076}, language = {en}, url = {http://www.numdam.org/item/AIHPC_2002__19_6_871_0/} }
TY - JOUR AU - Conti, M. AU - Terracini, S. AU - Verzini, G. TI - Nehari's problem and competing species systems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2002 SP - 871 EP - 888 VL - 19 IS - 6 PB - Elsevier UR - http://www.numdam.org/item/AIHPC_2002__19_6_871_0/ LA - en ID - AIHPC_2002__19_6_871_0 ER -
Conti, M.; Terracini, S.; Verzini, G. Nehari's problem and competing species systems. Annales de l'I.H.P. Analyse non linéaire, Tome 19 (2002) no. 6, pp. 871-888. http://www.numdam.org/item/AIHPC_2002__19_6_871_0/
[1] On the existence of changing sign solutions for semilinear Dirichlet problem, Topol. Methods Nonlinear Anal. 7 (1997) 115-131. | MR | Zbl
, ,[2] Existence and multiplicity results for some superlinear elliptic problem on Rn, Comm. Partial Differential Equations 20 (1995) 1725-1741. | MR | Zbl
, ,[3] Infinitely many radial solutions of a semilinear elliptic problem on RN, Arch. Rat. Mech. Anal. 124 (1993) 261-276. | MR | Zbl
, ,[4] A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math. 27 (1997) 1041-1053. | MR | Zbl
, , ,[5] A minimax principle, index of critical point, and existence of sign changing solutions to elliptic boundary value problems, Electron. J. Differential Equations 2 (1998). | EuDML | Zbl
, , ,[6] Stable coexistence in the Volterra-Lotka competition model with diffusion, SIAM J. Math. Anal. 44 (1984) 1112-1132. | MR | Zbl
, ,[7] Remarks on variational methods and lower-upper solutions, NoDEA 6 (1999) 371-393. | MR | Zbl
, , ,[8] Competing species systems with diffusion and large interaction, Rend. Sem. Mat. Fis. Milano 65 (1995) 23-33. | MR | Zbl
,[9] On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc. 284 (1984) 729-743. | MR | Zbl
,[10] On positive solutions of some pairs of differential equations, II, J. Differential Equations 60 (1985) 236-258. | MR | Zbl
,[11] On the existence and uniqueness of positive solutions for competing species models with diffusion, Trans. Amer. Math. Soc. 326 (1991) 829-859. | MR | Zbl
,[12] A counterexample on competing species equations, Differential Integral Equations 9 (1996) 239-246. | MR | Zbl
,[13] On uniqueness and stability for solutions of singularly perturbed predator-prey type equations with diffusion, J. Differential Equations 102 (1993) 1-32. | MR | Zbl
,[14] On sign-changing solutions of certain semilinear elliptic problems, Appl. Anal. 56 (1995) 193-206. | MR | Zbl
, ,[15] Positive solutions for a three-species competition system with diffusion. I. General existence results, Nonlinear Anal. 24 (1995) 337-357. | MR | Zbl
, ,[16] Positive solutions for a three-species competition system with diffusion. II. The case of equal birth rates, Nonlinear Anal. 24 (1995) 359-373. | MR | Zbl
, ,[17] Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations 114 (1994) 434-475. | MR | Zbl
, ,[18] Uniqueness and stability for solutions of competing species equations with large interactions, Comm. Appl. Nonlinear Anal. 1 (1994) 19-45. | MR | Zbl
, ,[19] On the existence and uniqueness of positive steady states in Lotka-Volterra ecological models with diffusion, Appl. Anal. 26 (1987) 145-160. | MR | Zbl
, ,[20] On steady state solutions of a system of reaction-diffusion equations from biology, Nonlinear Anal. TMA 6 (1982) 523-530. | MR | Zbl
, ,[21] Un'osservazione sul teorema di Brouwer, Boll. U.M.I. Serie II, Anno II 1 (1940) 5-7. | MR | Zbl
,[22] Characteristic values associated with a class of nonlinear second order differential equations, Acta Math. 105 (1961) 141-175. | MR | Zbl
,[23] On a superlinear elliptic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1) (1991) 43-57. | Numdam | MR | Zbl
, ,