Spikes in two coupled nonlinear Schrödinger equations
Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 4, pp. 403-439.
@article{AIHPC_2005__22_4_403_0,
     author = {Lin, Tai-Chia and Wei, Juncheng},
     title = {Spikes in two coupled nonlinear {Schr\"odinger} equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {403--439},
     publisher = {Elsevier},
     volume = {22},
     number = {4},
     year = {2005},
     doi = {10.1016/j.anihpc.2004.03.004},
     mrnumber = {2145720},
     zbl = {1080.35143},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2004.03.004/}
}
TY  - JOUR
AU  - Lin, Tai-Chia
AU  - Wei, Juncheng
TI  - Spikes in two coupled nonlinear Schrödinger equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2005
SP  - 403
EP  - 439
VL  - 22
IS  - 4
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2004.03.004/
DO  - 10.1016/j.anihpc.2004.03.004
LA  - en
ID  - AIHPC_2005__22_4_403_0
ER  - 
%0 Journal Article
%A Lin, Tai-Chia
%A Wei, Juncheng
%T Spikes in two coupled nonlinear Schrödinger equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2005
%P 403-439
%V 22
%N 4
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2004.03.004/
%R 10.1016/j.anihpc.2004.03.004
%G en
%F AIHPC_2005__22_4_403_0
Lin, Tai-Chia; Wei, Juncheng. Spikes in two coupled nonlinear Schrödinger equations. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 4, pp. 403-439. doi : 10.1016/j.anihpc.2004.03.004. https://www.numdam.org/articles/10.1016/j.anihpc.2004.03.004/

[1] Bates P., Fusco G., Equilibria with many nuclei for the Cahn-Hilliard equation, J. Differential Equations 160 (2000) 283-356. | MR | Zbl

[2] Bates P., Dancer E.N., Shi J., Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability, Adv. Differential Equations 4 (1999) 1-69. | MR | Zbl

[3] Conti M., Terracini S., Verzini G., Nehari's problem and competing species system, Ann. Inst. H. Poincaré 19 (6) (2002) 871-888. | Numdam | MR | Zbl

[4] Del Pino M., Felmer P., Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J. 48 (3) (1999) 883-898. | MR | Zbl

[5] Del Pino M., Felmer P., Wei J., On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal. 31 (1999) 63-79. | MR | Zbl

[6] Del Pino M., Felmer P., Wei J., On the role of distance function in some singularly perturbed problems, Comm. Partial Differential Equations 25 (2000) 155-177. | MR | Zbl

[7] Del Pino M., Felmer P., Wei J., Multiple peak solutions for some singular perturbation problems, Cal. Var. Partial Differential Equations 10 (2000) 119-134. | MR | Zbl

[8] Donley E.A., Claussen N.R., Cornish S.L., Roberts J.L., Cornell E.A., Wieman C.E., Dynamics of collapsing and exploding Bose-Einstein condensates, Nature 19 (412) (2001) 295-299.

[9] Dancer E.N., Wei J., On the location of spike s of solutions with two sharp layers for a singularly perturbed semilinear Dirichlet problem, J. Differential Equations 157 (1999) 82-101. | MR | Zbl

[10] Dancer E.N., Yan S., Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math. 189 (1999) 241-262. | MR | Zbl

[11] Estaban M.J., Lions P.L., Existence and non-existence results for semilinear problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A 93 (1982) 1-14. | MR | Zbl

[12] Esry B.D., Greene C.H., Burke J.P., Bohn J.L., Hartree-Fock theory for double condensates, Phys. Rev. Lett. 78 (1997) 3594-3597.

[13] Gidas B., Ni W.-M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in Rn, in: Mathematical Analysis and Applications, Part A, Adv. Math. Suppl. Stud., vol. 7A, Academic Press, New York, 1981, pp. 369-402. | MR | Zbl

[14] Gui C., Wei J., Multiple interior spike solutions for some singular perturbed Neumann problems, J. Differential Equations 158 (1999) 1-27. | MR | Zbl

[15] Gui C., Wei J., On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math. 52 (2000) 522-538. | MR | Zbl

[16] Gui C., Wei J., Winter M., Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 249-289. | Numdam | MR | Zbl

[17] Grossi M., Pistoia A., Wei J., Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Cal. Var. Partial Differential Equations 11 (2000) 143-175. | MR | Zbl

[18] Gupta S., Hadzibabic Z., Zwierlein M.W., Stan C.A., Dieckmann K., Schunck C.H., Van Kempen E.G.M., Verhaar B.J., Ketterle W., Radio-frequency spectroscopy of ultracold fermions, Science 300 (2003) 1723-1726.

[19] Hall D.S., Matthews M.R., Ensher J.R., Wieman C.E., Cornell E.A., Dynamics of component separation in a binary mixture of Bose-Einstein condensates, Phys. Rev. Lett. 81 (1998) 1539-1542.

[20] Kwong M.K., Uniqueness of positive solutions of Δu-u+up=0 in Rn, Arch. Rational Mech. Anal. 105 (1989) 243-266. | MR | Zbl

[21] Li Y.-Y., On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations 23 (1998) 487-545. | MR | Zbl

[22] Li Y.-Y., Nirenberg L., The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math. 51 (1998) 1445-1490. | MR | Zbl

[23] Lieband E., Loss M., Analysis, American Mathematical Society, 1996. | Zbl

[24] Myatt C.J., Burt E.A., Ghrist R.W., Cornell E.A., Wieman C.E., Production of two overlapping Bose-Einstein condensates by sympathetic cooling, Phys. Rev. Lett. 78 (1997) 586-589.

[25] Ni W.-M., Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc. 45 (1998) 9-18. | MR | Zbl

[26] Ni W.-M., Takagi I., On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math. 41 (1991) 819-851. | MR | Zbl

[27] Ni W.-M., Takagi I., Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993) 247-281. | MR | Zbl

[28] Ni W.-M., Wei J., On the location and profile of spike-Layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995) 731-768. | MR | Zbl

[29] Timmermans E., Phase separation of Bose-Einstein condensates, Phys. Rev. Lett. 81 (1998) 5718-5721.

[30] Troy W., Symmetry properties in systems of semilinear elliptic equations, J. Differential Equations 42 (3) (1981) 400-413. | MR | Zbl

[31] Wei J., On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations 129 (1996) 315-333. | MR | Zbl

[32] Wei J., On the interior spike layer solutions to a singularly perturbed Neumann problem, Tohoku Math. J. 50 (1998) 159-178. | MR | Zbl

[33] Wei J., On the effect of the domain geometry in a singularly perturbed Dirichlet problem, Differential Integral Equations 13 (2000) 15-45. | MR | Zbl

[34] Wei J., On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Differential Equations 134 (1997) 104-133. | MR | Zbl

[35] Wei J., Winter M., Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 459-492. | Numdam | MR | Zbl

[36] Wei J., Winter M., Multiple boundary spike solutions for a wide class of singular perturbation problems, J. London Math. Soc. 59 (1999) 585-606. | MR | Zbl

  • Zhang, Jing Infinitely Many Sign-Changing Solutions for Coupled Schrödinger System, Asymptotic Analysis (2025) | DOI:10.1177/09217134241312535
  • Guo, Lun; Li, Qi; Luo, Xiao; Molle, Riccardo Standing waves for two-component elliptic system with critical growth in ${{\mathbb {R}}}^{4}$: the attractive case, Mathematische Zeitschrift, Volume 309 (2025) no. 2 | DOI:10.1007/s00209-024-03660-z
  • Hajaiej, Hichem; Luo, Xiao; Yang, Tao Static States for Rotating Two‐Component Bose–Einstein Condensates, Studies in Applied Mathematics, Volume 154 (2025) no. 1 | DOI:10.1111/sapm.70013
  • Clapp, Mónica; Saldaña, Alberto; Szulkin, Andrzej On a Schrödinger system with shrinking regions of attraction, Zeitschrift für angewandte Mathematik und Physik, Volume 76 (2025) no. 1 | DOI:10.1007/s00033-024-02404-7
  • Clapp, Mónica; Saldaña, Alberto; Szulkin, Andrzej Configuration spaces and multiple positive solutions to a singularly perturbed elliptic system, Boletín de la Sociedad Matemática Mexicana, Volume 30 (2024) no. 2 | DOI:10.1007/s40590-024-00610-x
  • Zhou, Xinlu; Zhang, Jian Cross-invariant sets of the coupled nonlinear Schrödinger system with harmonic potentials, Discrete and Continuous Dynamical Systems - B, Volume 0 (2024) no. 0, p. 0 | DOI:10.3934/dcdsb.2024186
  • Duan, Lipeng; Luo, Xiao; Zhen, Maoding New vector solutions for the cubic nonlinear schrödinger system, Journal d'Analyse Mathématique, Volume 153 (2024) no. 1, p. 247 | DOI:10.1007/s11854-023-0315-y
  • Ye, Hongyu; Liu, Yue The existence of positive solutions for a critically coupled Schrödinger system in a ball of R3, Journal of Mathematical Analysis and Applications, Volume 538 (2024) no. 2, p. 128424 | DOI:10.1016/j.jmaa.2024.128424
  • Kong, Yuzhen; Cui, Zhiyuan; Zhao, Dun Limit Behavior of Ground States of 2D Binary BECs in Steep Potential Wells, Acta Mathematica Scientia, Volume 43 (2023) no. 1, p. 409 | DOI:10.1007/s10473-023-0123-6
  • Zhen, Maoding; Zhang, Binlin; Rădulescu, Vicenţiu D. Multi-Peak Solutions for Coupled Nonlinear Schrödinger Systems in Low Dimensions, Applied Mathematics Optimization, Volume 88 (2023) no. 1 | DOI:10.1007/s00245-023-09974-4
  • Byeon, Jaeyoung; Moon, Sang-Hyuck; Lin, Tai-Chia Nonlinear Schrödinger systems with trapping potentials for mixed attractive and repulsive interactions, Calculus of Variations and Partial Differential Equations, Volume 62 (2023) no. 7 | DOI:10.1007/s00526-023-02529-z
  • Clapp, Mónica; Soares, Mayra Coupled and uncoupled sign-changing spikes of singularly perturbed elliptic systems, Communications in Contemporary Mathematics, Volume 25 (2023) no. 09 | DOI:10.1142/s0219199722500481
  • Guo, Qing; Liu, Junyuan; Peng, Shuangjie Existence and non-degeneracy of positive multi-bubbling solutions to critical elliptic systems of Hamiltonian type, Journal of Differential Equations, Volume 355 (2023), p. 16 | DOI:10.1016/j.jde.2023.01.024
  • Tang, Zhongwei; Wang, Lushun; Xie, Huafei Multiple mixed interior and boundary peaks synchronized solutions for nonlinear coupled elliptic systems, Journal of Mathematical Physics, Volume 64 (2023) no. 5 | DOI:10.1063/5.0120617
  • Clapp, Mónica; Soares, Mayra Energy estimates for seminodal solutions to an elliptic system with mixed couplings, Nonlinear Differential Equations and Applications NoDEA, Volume 30 (2023) no. 1 | DOI:10.1007/s00030-022-00817-9
  • Qian, Xiaoyong; Wang, Jun; Zhu, Maochun Existence of solutions for a coupled Schrödinger equations with critical exponent, Electronic Research Archive, Volume 30 (2022) no. 7, p. 2730 | DOI:10.3934/era.2022140
  • Yin, Xin; Zou, Wenming Positive least energy solutions for k-coupled Schrödinger system with critical exponent: the higher dimension and cooperative case, Journal of Fixed Point Theory and Applications, Volume 24 (2022) no. 1 | DOI:10.1007/s11784-021-00923-8
  • Geng, Qiuping; Dong, Yangyang; Wang, Jun Existence and multiplicity of nontrivial solutions of weakly coupled nonlinear Hartree type elliptic system, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 2 | DOI:10.1007/s00033-022-01707-x
  • Kong, Yuzhen; Wang, Qingxuan; Zhao, Dun Mass Concentration and Asymptotic Uniqueness of Ground State for 3-Component BEC with External Potential in ℝ2, Advanced Nonlinear Studies, Volume 21 (2021) no. 3, p. 593 | DOI:10.1515/ans-2021-2131
  • Geng, Qiuping; Wang, Jun; Yang, Jing Existence of multiple nontrivial solutions of the nonlinear Schrödinger-Korteweg-de Vries type system, Advances in Nonlinear Analysis, Volume 11 (2021) no. 1, p. 636 | DOI:10.1515/anona-2021-0214
  • Kong, Yuzhen; Wang, Qingxuan; Zhao, Dun Ground states of spin-1 BEC with attractive mean-field interaction trapped in harmonic potential in ${\mathbb {R}}^2$, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 4 | DOI:10.1007/s00526-021-02015-4
  • Guo, Zhenyu; Luo, Senping; Zou, Wenming On a critical Schrödinger system involving Hardy terms, Journal of Fixed Point Theory and Applications, Volume 23 (2021) no. 4 | DOI:10.1007/s11784-021-00891-z
  • Byeon, Jaeyoung; Lee, Youngae; Moon, Sang-Hyuck Partly clustering solutions of nonlinear Schrödinger systems with mixed interactions, Journal of Functional Analysis, Volume 280 (2021) no. 12, p. 108987 | DOI:10.1016/j.jfa.2021.108987
  • Li, Haoyu; Wang, Zhi-Qiang Multiple nodal solutions having shared componentwise nodal numbers for coupled Schrödinger equations, Journal of Functional Analysis, Volume 280 (2021) no. 7, p. 108872 | DOI:10.1016/j.jfa.2020.108872
  • Jin, Ke; Shen, Zifei; Wang, Lushun Locations of spikes for linearly coupled Schrödinger systems, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 18, p. 14915 | DOI:10.1002/mma.7752
  • Byeon, Jaeyoung; Moon, Sang-Hyuck; Wang, Zhi-Qiang Nonlinear Schrödinger systems with mixed interactions: locally minimal energy vector solutions, Nonlinearity, Volume 34 (2021) no. 9, p. 6473 | DOI:10.1088/1361-6544/ac155a
  • Yang, Minbo; Zhou, Xianmei On a Coupled Schrödinger System with Stein–Weiss Type Convolution Part, The Journal of Geometric Analysis, Volume 31 (2021) no. 10, p. 10263 | DOI:10.1007/s12220-021-00645-w
  • Wang, Chunhua; Zhou, Jing Infinitely Many Solitary Waves Due to the Second-Harmonic Generation in Quadratic Media, Acta Mathematica Scientia, Volume 40 (2020) no. 1, p. 16 | DOI:10.1007/s10473-020-0102-3
  • He, Qihan; Peng, Yanfang Infinitely many Solutions with Peaks for a Fractional System in ℝN, Acta Mathematica Scientia, Volume 40 (2020) no. 2, p. 389 | DOI:10.1007/s10473-020-0207-5
  • Deng, Jin; Xia, Aliang; Yang, Jianfu Positive vortex solutions and phase separation for coupled Schrodinger system with singular potential, Electronic Journal of Differential Equations, Volume 2020 (2020) no. 01-132, p. 108 | DOI:10.58997/ejde.2020.108
  • Wei, Juncheng; Wu, Yuanze Ground states of nonlinear Schrödinger systems with mixed couplings, Journal de Mathématiques Pures et Appliquées, Volume 141 (2020), p. 50 | DOI:10.1016/j.matpur.2020.07.012
  • Wang, Xin; Yue, Xiaorui Sign Changing Solutions for Coupled Critical Elliptic Equations, Journal of Function Spaces, Volume 2020 (2020), p. 1 | DOI:10.1155/2020/9841640
  • Chang, Xiaojun; Sato, Yohei Multiplicity of localized solutions of nonlinear Schrödinger systems for infinite attractive case, Journal of Mathematical Analysis and Applications, Volume 491 (2020) no. 2, p. 124358 | DOI:10.1016/j.jmaa.2020.124358
  • Geng, Qiuping; Wang, Jun A Liouville's theorem for a fractional elliptic system with indefinite nonlinearities, Journal of Mathematical Analysis and Applications, Volume 492 (2020) no. 2, p. 124471 | DOI:10.1016/j.jmaa.2020.124471
  • Zhou, Luyan; Wang, Zhi-Qiang Uniqueness of positive solutions to some Schrödinger systems, Nonlinear Analysis, Volume 195 (2020), p. 111750 | DOI:10.1016/j.na.2020.111750
  • Long, Wei; Peng, Shuangjie Positive vector solutions for a Schrödinger system with external source terms, Nonlinear Differential Equations and Applications NoDEA, Volume 27 (2020) no. 1 | DOI:10.1007/s00030-019-0608-0
  • Long, Wei; Tang, Zhongwei; Yang, Sudan Many synchronized vector solutions for a Bose–Einstein system, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 150 (2020) no. 6, p. 3293 | DOI:10.1017/prm.2019.75
  • Luo, Haijun; Zhang, Zhitao Partial symmetry of normalized solutions for a doubly coupled Schrödinger system, SN Partial Differential Equations and Applications, Volume 1 (2020) no. 5 | DOI:10.1007/s42985-020-00016-0
  • Geng, Qiuping; Liao, Mian; Wang, Jun; Xiao, Lu Existence and bifurcation of nontrivial solutions for the coupled nonlinear Schrödinger–Korteweg–de Vries system, Zeitschrift für angewandte Mathematik und Physik, Volume 71 (2020) no. 1 | DOI:10.1007/s00033-020-1256-2
  • Wu, Yuanze Ground States of a 𝐾-Component Critical System with Linear and Nonlinear Couplings: The Attractive Case, Advanced Nonlinear Studies, Volume 19 (2019) no. 3, p. 595 | DOI:10.1515/ans-2019-2049
  • Wu, Yuanze; Zou, Wenming Spikes of the two-component elliptic system in ${\mathbb {R}}^4$ R 4 with the critical Sobolev exponent, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 1 | DOI:10.1007/s00526-018-1479-7
  • Zhang, Jianjun; do Ó, João Marcos Spiked vector solutions of coupled Schrödinger systems with critical exponent and solutions concentrating on spheres, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 3 | DOI:10.1007/s00526-019-1540-1
  • Peng, Shuangjie; Peng, Yanfang; Wang, Qingfang Sign-changing solutions of an elliptic system with critical exponent in dimension N = 5, Journal d'Analyse Mathématique, Volume 137 (2019) no. 1, p. 231 | DOI:10.1007/s11854-018-0071-6
  • Tang, Zhongwei; Wang, Lushun Optimal number of solutions for nonlinear coupled Schrödinger systems, part I: Synchronized case, Journal of Differential Equations, Volume 266 (2019) no. 6, p. 3601 | DOI:10.1016/j.jde.2018.09.018
  • Guo, Yujin; Li, Shuai; Wei, Juncheng; Zeng, Xiaoyu Ground states of two-component attractive Bose–Einstein condensates I: Existence and uniqueness, Journal of Functional Analysis, Volume 276 (2019) no. 1, p. 183 | DOI:10.1016/j.jfa.2018.09.015
  • Luo, Haijun; Zhang, Zhitao Existence and nonexistence of bound state solutions for Schrödinger systems with linear and nonlinear couplings, Journal of Mathematical Analysis and Applications, Volume 475 (2019) no. 1, p. 350 | DOI:10.1016/j.jmaa.2019.02.045
  • Chen, Yan-Hong; Zou, Wenming Vector solutions for two coupled Schrödinger equations on Riemannian manifolds, Journal of Mathematical Physics, Volume 60 (2019) no. 5 | DOI:10.1063/1.5100021
  • Che, Guofeng; Chen, Haibo; Wu, Tsung-fang Existence and multiplicity of positive solutions for fractional Laplacian systems with nonlinear coupling, Journal of Mathematical Physics, Volume 60 (2019) no. 8 | DOI:10.1063/1.5087755
  • Kong, Yuzhen; Zhao, Dun; Wang, Qingxuan Semiclassical asymptotic behavior of ground state for the two‐component Hartree system, Mathematical Methods in the Applied Sciences, Volume 42 (2019) no. 18, p. 7135 | DOI:10.1002/mma.5820
  • You, Song; Zhao, Peihao; Wang, Qingxuan Positive ground states for coupled nonlinear Choquard equations involving Hardy–Littlewood–Sobolev critical exponent, Nonlinear Analysis: Real World Applications, Volume 48 (2019), p. 182 | DOI:10.1016/j.nonrwa.2019.01.015
  • Chang, Xiaojun; Sato, Yohei Localized solutions of nonlinear Schrödinger systems with critical frequency for infinite attractive case, Nonlinear Differential Equations and Applications NoDEA, Volume 26 (2019) no. 5 | DOI:10.1007/s00030-019-0578-2
  • Byeon, Jaeyoung; Lee, Youngae; Wang, Zhi-Qiang Formation of Radial Patterns via Mixed Attractive and Repulsive Interactions for Schrödinger Systems, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 2, p. 1514 | DOI:10.1137/18m1196789
  • Wang, Lushun Number of synchronized and segregated interior spike solutions for nonlinear coupled elliptic systems with continuous potentials, Science China Mathematics, Volume 62 (2019) no. 3, p. 509 | DOI:10.1007/s11425-017-9098-9
  • Clapp, Mónica; Pistoia, Angela Existence and phase separation of entire solutions to a pure critical competitive elliptic system, Calculus of Variations and Partial Differential Equations, Volume 57 (2018) no. 1 | DOI:10.1007/s00526-017-1283-9
  • Ye, Hongyu Positive solutions for critically coupled Schrödinger systems with attractive interactions, Discrete Continuous Dynamical Systems - A, Volume 38 (2018) no. 2, p. 485 | DOI:10.3934/dcds.2018022
  • Guo, Yujin; Zeng, Xiaoyu; Zhou, Huan-Song Blow-up behavior of ground states for a nonlinear Schrödinger system with attractive and repulsive interactions, Journal of Differential Equations, Volume 264 (2018) no. 2, p. 1411 | DOI:10.1016/j.jde.2017.09.039
  • Wu, Yuanze Sign-changing semi-classical solutions of the Brezís–Nirenberg problems with jump nonlinearities in high dimensions, Journal of Mathematical Analysis and Applications, Volume 461 (2018) no. 1, p. 7 | DOI:10.1016/j.jmaa.2018.01.006
  • Tang, Zhongwei; Wang, Lushun Segregated vector solutions with multi-scale spikes for nonlinear coupled elliptic systems, Journal of Mathematical Analysis and Applications, Volume 464 (2018) no. 1, p. 1 | DOI:10.1016/j.jmaa.2018.02.019
  • Wu, Yuanze Least energy sign-changing solutions of the singularly perturbed Brezis–Nirenberg problem, Nonlinear Analysis, Volume 171 (2018), p. 85 | DOI:10.1016/j.na.2018.01.013
  • Guo, Yuxia; Luo, Senping; Zou, Wenming The existence, uniqueness and nonexistence of the ground state to theN-coupled Schrödinger systems in $ \newcommand{\R}{{\mathbb R}} \boldsymbol{\R^n (n\leqslant 4)}$, Nonlinearity, Volume 31 (2018) no. 1, p. 314 | DOI:10.1088/1361-6544/aa8ca9
  • Wu, Yuanze On the semiclassical solutions of a two-component elliptic system in $\mathbb {R}^4$ R 4 with trapping potentials and Sobolev critical exponent: the repulsive case, Zeitschrift für angewandte Mathematik und Physik, Volume 69 (2018) no. 5 | DOI:10.1007/s00033-018-1006-x
  • Wu, Yuanze; Wu, Tsung-fang; Zou, Wenming On a two-component Bose–Einstein condensate with steep potential wells, Annali di Matematica Pura ed Applicata (1923 -), Volume 196 (2017) no. 5, p. 1695 | DOI:10.1007/s10231-017-0635-6
  • Liu, Weiming; Peng, Yanfang Spike vector solutions for nonlinear Schrödinger systems with magnetic fields, Applicable Analysis, Volume 96 (2017) no. 7, p. 1077 | DOI:10.1080/00036811.2016.1178241
  • Peng, Yan-Fang; Ye, Hong-Yu Positive solutions for coupled Schrödinger system with critical exponent in R N $\mathbb{R}^{N}$ ( N ≥ 5 $N\geq5$ ), Boundary Value Problems, Volume 2017 (2017) no. 1 | DOI:10.1186/s13661-017-0834-5
  • Wang, Jun; Shi, Junping Standing waves for a coupled nonlinear Hartree equations with nonlocal interaction, Calculus of Variations and Partial Differential Equations, Volume 56 (2017) no. 6 | DOI:10.1007/s00526-017-1268-8
  • Wang, Liping; Zhao, Chunyi Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential, Discrete Continuous Dynamical Systems - A, Volume 37 (2017) no. 3, p. 1707 | DOI:10.3934/dcds.2017071
  • Liao, Liming; Ji, Guanghua; Tang, Zhongwei; Zhang, Hui Spike-Layer Simulation for Steady-State Coupled Schrödinger Equations, East Asian Journal on Applied Mathematics, Volume 7 (2017) no. 3, p. 566 | DOI:10.4208/eajam.030616.130517a
  • Byeon, Jaeyoung; Sato, Yohei; Wang, Zhi-Qiang Pattern formation via mixed interactions for coupled Schrödinger equations under Neumann boundary condition, Journal of Fixed Point Theory and Applications, Volume 19 (2017) no. 1, p. 559 | DOI:10.1007/s11784-016-0365-1
  • Tang, Zhongwei; Wang, Lushun Number of synchronized and segregated interior spike solutions for nonlinear coupled elliptic systems, Journal of Mathematical Analysis and Applications, Volume 448 (2017) no. 2, p. 1079 | DOI:10.1016/j.jmaa.2016.11.044
  • Ye, Hongyu On the existence of positive least energy solutions for a coupled Schrödinger system with critical exponent, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 4, p. 1032 | DOI:10.1002/mma.4034
  • Lucia, Marcello; Tang, Zhongwei Multi-bump bound states for a Schrödinger system via Lyapunov–Schmidt Reduction, Nonlinear Differential Equations and Applications NoDEA, Volume 24 (2017) no. 6 | DOI:10.1007/s00030-017-0489-z
  • Li, Congming; Villavert, John Existence of positive solutions to semilinear elliptic systems with supercritical growth, Communications in Partial Differential Equations, Volume 41 (2016) no. 7, p. 1029 | DOI:10.1080/03605302.2016.1190376
  • Byeon, Jaeyoung; Sato, Yohei; Wang, Zhi-Qiang Pattern formation via mixed attractive and repulsive interactions for nonlinear Schrödinger systems, Journal de Mathématiques Pures et Appliquées, Volume 106 (2016) no. 3, p. 477 | DOI:10.1016/j.matpur.2016.03.001
  • Bartsch, Thomas; Jeanjean, Louis; Soave, Nicola Normalized solutions for a system of coupled cubic Schrödinger equations on R3, Journal de Mathématiques Pures et Appliquées, Volume 106 (2016) no. 4, p. 583 | DOI:10.1016/j.matpur.2016.03.004
  • Wang, Jun; Shi, Junping Standing waves of a weakly coupled Schrödinger system with distinct potential functions, Journal of Differential Equations, Volume 260 (2016) no. 2, p. 1830 | DOI:10.1016/j.jde.2015.09.052
  • Soave, Nicola; Tavares, Hugo New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms, Journal of Differential Equations, Volume 261 (2016) no. 1, p. 505 | DOI:10.1016/j.jde.2016.03.015
  • Liu, Jiaquan; Liu, Xiangqing; Wang, Zhi-Qiang Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth, Journal of Differential Equations, Volume 261 (2016) no. 12, p. 7194 | DOI:10.1016/j.jde.2016.09.018
  • Liu, Weiming Infinitely many solutions for nonlinear Schrödinger systems with magnetic potentials in R3, Mathematical Methods in the Applied Sciences, Volume 39 (2016) no. 6, p. 1452 | DOI:10.1002/mma.3581
  • Wang, Jun; He, Qing; Xiao, Lu; Zhang, Fubao Positive solutions for Schrödinger system with asymptotically periodic potentials, Nonlinear Analysis, Volume 134 (2016), p. 215 | DOI:10.1016/j.na.2016.01.011
  • Li, Congming; Villavert, John A degree theory framework for semilinear elliptic systems, Proceedings of the American Mathematical Society, Volume 144 (2016) no. 9, p. 3731 | DOI:10.1090/proc/13166
  • WANG, Chunhua; XIE, Dingyi; ZHAN, Liping; ZHANG, Lipan; ZHAO, Liangpei Segregated vector solutions for nonlinear schrödinger systems in ℝ2, Acta Mathematica Scientia, Volume 35 (2015) no. 2, p. 383 | DOI:10.1016/s0252-9602(15)60010-8
  • Fang, Guo-bei; Lü, Zhong-xue Existence and uniqueness of positive solutions to three coupled nonlinear Schrödinger equations, Acta Mathematicae Applicatae Sinica, English Series, Volume 31 (2015) no. 4, p. 1021 | DOI:10.1007/s10255-015-0524-y
  • Liu, Jiaquan; Liu, Xiangqing; Wang, Zhi-qiang Multiple mixed states of nodal solutions for nonlinear Schrödinger systems, Calculus of Variations and Partial Differential Equations, Volume 52 (2015) no. 3-4, p. 565 | DOI:10.1007/s00526-014-0724-y
  • Soave, Nicola On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition, Calculus of Variations and Partial Differential Equations, Volume 53 (2015) no. 3-4, p. 689 | DOI:10.1007/s00526-014-0764-3
  • Sato, Yohei; Wang, Zhi-Qiang Multiple positive solutions for Schrödinger systems with mixed couplings, Calculus of Variations and Partial Differential Equations, Volume 54 (2015) no. 2, p. 1373 | DOI:10.1007/s00526-015-0828-z
  • Byeon, Jaeyoung Semi-classical standing waves for nonlinear Schrödinger systems, Calculus of Variations and Partial Differential Equations, Volume 54 (2015) no. 2, p. 2287 | DOI:10.1007/s00526-015-0866-6
  • Sato, Yohei; Wang, Zhi-Qiang On the least energy sign-changing solutions for a nonlinear elliptic system, Discrete Continuous Dynamical Systems - A, Volume 35 (2015) no. 5, p. 2151 | DOI:10.3934/dcds.2015.35.2151
  • Pi, Huirong; Peng, Shuangjie Spike vector solutions for some coupled nonlinear Schrödinger equations, Discrete and Continuous Dynamical Systems, Volume 36 (2015) no. 4, p. 2205 | DOI:10.3934/dcds.2016.36.2205
  • Peng, Yanfang On elliptic systems with Sobolev critical exponent, Discrete and Continuous Dynamical Systems, Volume 36 (2015) no. 6, p. 3357 | DOI:10.3934/dcds.2016.36.3357
  • Yue, Xiaorui Positive ground state solutions and multiple nontrivial solutions for coupled critical elliptic systems, Journal of Mathematical Analysis and Applications, Volume 427 (2015) no. 1, p. 88 | DOI:10.1016/j.jmaa.2015.01.073
  • Liu, Weiming Multi-peak solutions for nonlinear Schrödinger systems with magnetic potentials inR3, Journal of Mathematical Analysis and Applications, Volume 431 (2015) no. 2, p. 1054 | DOI:10.1016/j.jmaa.2015.06.013
  • Zhuo, Ran; Li, FengQuan Liouville type theorems for Schrödinger systems, Science China Mathematics, Volume 58 (2015) no. 1, p. 179 | DOI:10.1007/s11425-014-4925-9
  • Yue, Xiaorui; Zou, Wenming A perturbation method for k-mixtures of Bose–Einstein condensates, Zeitschrift für angewandte Mathematik und Physik, Volume 66 (2015) no. 3, p. 1023 | DOI:10.1007/s00033-014-0468-8
  • Tang, Zhongwei Segregated peak solutions of coupled Schrödinger systems with Neumann boundary conditions, Discrete Continuous Dynamical Systems - A, Volume 34 (2014) no. 12, p. 5299 | DOI:10.3934/dcds.2014.34.5299
  • Long, Wei; Peng, Shuangjie Segregated vector solutions for a class of Bose–Einstein systems, Journal of Differential Equations, Volume 257 (2014) no. 1, p. 207 | DOI:10.1016/j.jde.2014.03.019
  • Chen, Zhijie; Lin, Chang-Shou; Zou, Wenming Monotonicity and nonexistence results to cooperative systems in the half space, Journal of Functional Analysis, Volume 266 (2014) no. 2, p. 1088 | DOI:10.1016/j.jfa.2013.08.021
  • Tang, Zhongwei Multi-peak solutions to coupled Schrödinger systems with Neumann boundary conditions, Journal of Mathematical Analysis and Applications, Volume 409 (2014) no. 2, p. 684 | DOI:10.1016/j.jmaa.2013.07.053
  • Ye, Hongyu; Peng, Yanfang Positive least energy solutions for a coupled Schrödinger system with critical exponent, Journal of Mathematical Analysis and Applications, Volume 417 (2014) no. 1, p. 308 | DOI:10.1016/j.jmaa.2014.03.028
  • Yin, Hui; Lü, Zhongxue Positive solutions to integral systems with weight and Bessel potentials, Journal of Mathematical Analysis and Applications, Volume 418 (2014) no. 1, p. 264 | DOI:10.1016/j.jmaa.2014.03.076
  • Yang, Minbo; Wei, Yuanhong; Ding, Yanheng Existence of semiclassical states for a coupled Schrödinger system with potentials and nonlocal nonlinearities, Zeitschrift für angewandte Mathematik und Physik, Volume 65 (2014) no. 1, p. 41 | DOI:10.1007/s00033-013-0317-1
  • Sato, Yohei; Wang, Zhi-Qiang On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 30 (2013) no. 1, p. 1 | DOI:10.1016/j.anihpc.2012.05.002
  • Peng, Shuangjie; Wang, Zhi-qiang Segregated and Synchronized Vector Solutions for Nonlinear Schrödinger Systems, Archive for Rational Mechanics and Analysis, Volume 208 (2013) no. 1, p. 305 | DOI:10.1007/s00205-012-0598-0
  • Zhu, Shiren; Chen, Xiaoli; Yang, Jianfu Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system, Communications on Pure Applied Analysis, Volume 12 (2013) no. 6, p. 2685 | DOI:10.3934/cpaa.2013.12.2685
  • Lei, Yutian Positive solutions of integral systems involving Bessel potentials, Communications on Pure Applied Analysis, Volume 12 (2013) no. 6, p. 2721 | DOI:10.3934/cpaa.2013.12.2721
  • Tian, Rushun; Wang, Zhi-Qiang Bifurcation results on positive solutions of an indefinite nonlinear elliptic system, Discrete Continuous Dynamical Systems - A, Volume 33 (2013) no. 1, p. 335 | DOI:10.3934/dcds.2013.33.335
  • Lin, Tai-Chia; Wu, Tsung-Fang Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations, Discrete Continuous Dynamical Systems - A, Volume 33 (2013) no. 7, p. 2911 | DOI:10.3934/dcds.2013.33.2911
  • Wang, Weichung; Wu, Tsung-Fang; Liu, Chien-Hsiang On the multiple spike solutions for singularly perturbed elliptic systems, Discrete Continuous Dynamical Systems - B, Volume 18 (2013) no. 1, p. 237 | DOI:10.3934/dcdsb.2013.18.237
  • Chen, Zhijie; Lin, Chang-Shou; Zou, Wenming Multiple sign-changing and semi-nodal solutions for coupled Schrödinger equations, Journal of Differential Equations, Volume 255 (2013) no. 11, p. 4289 | DOI:10.1016/j.jde.2013.08.009
  • Nguyen, Nghiem V.; Tian, Rushun; Deconinck, Bernard; Sheils, Natalie Global existence for a coupled system of Schrödinger equations with power-type nonlinearities, Journal of Mathematical Physics, Volume 54 (2013) no. 1 | DOI:10.1063/1.4774149
  • Tavares, H.; Weth, T. Existence and symmetry results for competing variational systems, Nonlinear Differential Equations and Applications NoDEA, Volume 20 (2013) no. 3, p. 715 | DOI:10.1007/s00030-012-0176-z
  • Essman, Michael; Shi, Junping Bifurcation diagrams of coupled Schrödinger equations, Applied Mathematics and Computation, Volume 219 (2012) no. 8, p. 3646 | DOI:10.1016/j.amc.2012.09.061
  • Chen, Zhijie; Zou, Wenming Positive Least Energy Solutions and Phase Separation for Coupled Schrödinger Equations with Critical Exponent, Archive for Rational Mechanics and Analysis, Volume 205 (2012) no. 2, p. 515 | DOI:10.1007/s00205-012-0513-8
  • Lin, Huei-li Multiple positive solutions for semilinear elliptic systems involving subcritical nonlinearities in R N, Boundary Value Problems, Volume 2012 (2012) no. 1 | DOI:10.1186/1687-2770-2012-118
  • Lei, Yutian; Li, Congming Integrability and asymptotics of positive solutions of a γ-Laplace system, Journal of Differential Equations, Volume 252 (2012) no. 3, p. 2739 | DOI:10.1016/j.jde.2011.10.009
  • Lucia, Marcello; Tang, Zhongwei Multi-bump bound states for a system of nonlinear Schrödinger equations, Journal of Differential Equations, Volume 252 (2012) no. 5, p. 3630 | DOI:10.1016/j.jde.2011.11.017
  • Guo, Yuxia; Tang, Zhongwei Multibump bound states for quasilinear Schrödinger systems with critical frequency, Journal of Fixed Point Theory and Applications, Volume 12 (2012) no. 1-2, p. 135 | DOI:10.1007/s11784-012-0092-1
  • Wu, Tsung-Fang Two coupled nonlinear Schrödinger equations involving a non-constant coupling coefficient, Nonlinear Analysis: Theory, Methods Applications, Volume 75 (2012) no. 13, p. 4766 | DOI:10.1016/j.na.2012.03.027
  • Liu, Zuhan Rotating multicomponent Bose–Einstein condensates, Nonlinear Differential Equations and Applications NoDEA, Volume 19 (2012) no. 1, p. 49 | DOI:10.1007/s00030-011-0117-2
  • Ikoma, Norihisa; Tanaka, Kazunaga A local mountain pass type result for a system of nonlinear Schrödinger equations, Calculus of Variations and Partial Differential Equations, Volume 40 (2011) no. 3-4, p. 449 | DOI:10.1007/s00526-010-0347-x
  • Liu, Zuhan The spatial behavior of rotating two-component Bose–Einstein condensates, Journal of Functional Analysis, Volume 261 (2011) no. 6, p. 1711 | DOI:10.1016/j.jfa.2011.05.017
  • Tang, Zhongwei Spike-layer solutions to singularly perturbed semilinear systems of coupled Schrödinger equations, Journal of Mathematical Analysis and Applications, Volume 377 (2011) no. 1, p. 336 | DOI:10.1016/j.jmaa.2010.11.001
  • Zhang, Shan; Liu, Zuhan; Lin, Zhigui Global minimizers of coexistence for rotating -component Bose–Einstein condensates, Nonlinear Analysis: Real World Applications, Volume 12 (2011) no. 5, p. 2567 | DOI:10.1016/j.nonrwa.2011.03.006
  • Cao, Daomin; Chern, I-Liang; Wei, Jun-Cheng On ground state of spinor Bose–Einstein condensates, Nonlinear Differential Equations and Applications NoDEA, Volume 18 (2011) no. 4, p. 427 | DOI:10.1007/s00030-011-0102-9
  • Liu, Zuhan Rotating Two-Component Bose-Einstein Condensates, Acta Applicandae Mathematicae, Volume 110 (2010) no. 1, p. 367 | DOI:10.1007/s10440-008-9417-x
  • Kim, Kwang Ik; Liu, Zuhan Bose–Einstein Condensates with Non-classical Vortex, Acta Applicandae Mathematicae, Volume 110 (2010) no. 3, p. 1137 | DOI:10.1007/s10440-009-9498-1
  • Jing, Long; Jianfu, Yang Positive solutions for weakly coupled nonlinear elliptic systems, Acta Mathematica Scientia, Volume 30 (2010) no. 5, p. 1577 | DOI:10.1016/s0252-9602(10)60151-8
  • Ma, Li; Liu, Baiyu Symmetry results for decay solutions of elliptic systems in the whole space, Advances in Mathematics, Volume 225 (2010) no. 6, p. 3052 | DOI:10.1016/j.aim.2010.05.022
  • Weth, Tobias; Dancer, E.N.; Wei, Juncheng A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 27 (2010) no. 3, p. 953 | DOI:10.1016/j.anihpc.2010.01.009
  • Bartsch, Thomas; Dancer, Norman; Wang, Zhi-Qiang A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calculus of Variations and Partial Differential Equations, Volume 37 (2010) no. 3-4, p. 345 | DOI:10.1007/s00526-009-0265-y
  • Ma, Li; Schulze, B.-W. Blow-up Theory for the Coupled L 2-Critical Nonlinear Schrödinger System in the Plane, Milan Journal of Mathematics, Volume 78 (2010) no. 2, p. 591 | DOI:10.1007/s00032-010-0131-6
  • Chen, Wenxiong; Li, Congming Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Mathematica Scientia, Volume 29 (2009) no. 4, p. 949 | DOI:10.1016/s0252-9602(09)60079-5
  • Zhongxue, Lü; Zuhan, Liu Sharp thresholds of two-components Bose–Einstein condensates, Computers Mathematics with Applications, Volume 58 (2009) no. 8, p. 1608 | DOI:10.1016/j.camwa.2009.07.022
  • Liu, Zuhan Phase separation of two-component Bose–Einstein condensates, Journal of Mathematical Physics, Volume 50 (2009) no. 10 | DOI:10.1063/1.3243875
  • Wei, Juncheng; Weth, Tobias Radial Solutions and Phase Separation in a System of Two Coupled Schrödinger Equations, Archive for Rational Mechanics and Analysis, Volume 190 (2008) no. 1, p. 83 | DOI:10.1007/s00205-008-0121-9
  • Wei, Gongming Existence and concentration of ground states of coupled nonlinear Schrödinger equations with bounded potentials, Chinese Annals of Mathematics, Series B, Volume 29 (2008) no. 3, p. 247 | DOI:10.1007/s11401-007-0104-4
  • Liu, Zhaoli; Wang, Zhi-Qiang Multiple Bound States of Nonlinear Schrödinger Systems, Communications in Mathematical Physics, Volume 282 (2008) no. 3, p. 721 | DOI:10.1007/s00220-008-0546-x
  • Liu, Zuhan Two-component Bose–Einstein condensates, Journal of Mathematical Analysis and Applications, Volume 348 (2008) no. 1, p. 274 | DOI:10.1016/j.jmaa.2008.07.033
  • Ma, Li; Zhao, Lin Sharp thresholds of blow-up and global existence for the coupled nonlinear Schrödinger system, Journal of Mathematical Physics, Volume 49 (2008) no. 6 | DOI:10.1063/1.2939238
  • Wei, Juncheng; Weth, Tobias Asymptotic behaviour of solutions of planar elliptic systems with strong competition, Nonlinearity, Volume 21 (2008) no. 2, p. 305 | DOI:10.1088/0951-7715/21/2/006
  • Li, Congming; Ma, Li Uniqueness of Positive Bound States to Schrödinger Systems with Critical Exponents, SIAM Journal on Mathematical Analysis, Volume 40 (2008) no. 3, p. 1049 | DOI:10.1137/080712301
  • Sirakov, Boyan Least Energy Solitary Waves for a System of Nonlinear Schrödinger Equations in ${\mathbb{R}^n}$, Communications in Mathematical Physics, Volume 271 (2007) no. 1, p. 199 | DOI:10.1007/s00220-006-0179-x
  • Lin, Tai-Chia; Wei, Juncheng Ground State of N Coupled Nonlinear Schrodinger Equations in ${\mathbb{R}}^n, n \leq 3$, Communications in Mathematical Physics, Volume 277 (2007) no. 2, p. 573 | DOI:10.1007/s00220-007-0365-5
  • Wei, Gong-Ming Existence and concentration of ground states of coupled nonlinear Schrödinger equations, Journal of Mathematical Analysis and Applications, Volume 332 (2007) no. 2, p. 846 | DOI:10.1016/j.jmaa.2006.09.083
  • Lin, Tai-Chia; Wei, Juncheng Half-Skyrmions and spike-vortex solutions of two-component nonlinear Schrödinger systems, Journal of Mathematical Physics, Volume 48 (2007) no. 5 | DOI:10.1063/1.2722559
  • Lin, Tai-Chia; Wei, Juncheng Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials, Journal of Differential Equations, Volume 229 (2006) no. 2, p. 538 | DOI:10.1016/j.jde.2005.12.011
  • Lin, Tai-Chia; Wei, Juncheng Symbiotic bright solitary wave solutions of coupled nonlinear Schrödinger equations, Nonlinearity, Volume 19 (2006) no. 12, p. 2755 | DOI:10.1088/0951-7715/19/12/002
  • Lin, Tai-Chia; Wei, Juncheng Solitary and self-similar solutions of two-component system of nonlinear Schrödinger equations, Physica D: Nonlinear Phenomena, Volume 220 (2006) no. 2, p. 99 | DOI:10.1016/j.physd.2006.07.009

Cité par 147 documents. Sources : Crossref