@article{AIHPC_2005__22_2_227_0, author = {Esposito, Pierpaolo and Grossi, Massimo and Pistoia, Angela}, title = {On the existence of blowing-up solutions for a mean field equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {227--257}, publisher = {Elsevier}, volume = {22}, number = {2}, year = {2005}, doi = {10.1016/j.anihpc.2004.12.001}, mrnumber = {2124164}, zbl = {1129.35376}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2004.12.001/} }
TY - JOUR AU - Esposito, Pierpaolo AU - Grossi, Massimo AU - Pistoia, Angela TI - On the existence of blowing-up solutions for a mean field equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 227 EP - 257 VL - 22 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2004.12.001/ DO - 10.1016/j.anihpc.2004.12.001 LA - en ID - AIHPC_2005__22_2_227_0 ER -
%0 Journal Article %A Esposito, Pierpaolo %A Grossi, Massimo %A Pistoia, Angela %T On the existence of blowing-up solutions for a mean field equation %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 227-257 %V 22 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2004.12.001/ %R 10.1016/j.anihpc.2004.12.001 %G en %F AIHPC_2005__22_2_227_0
Esposito, Pierpaolo; Grossi, Massimo; Pistoia, Angela. On the existence of blowing-up solutions for a mean field equation. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 2, pp. 227-257. doi : 10.1016/j.anihpc.2004.12.001. https://www.numdam.org/articles/10.1016/j.anihpc.2004.12.001/
[1] Perturbation of
[2] Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, Berlin, 1998. | MR | Zbl
,[3] Critical Point at Infinity in Some Variational Problems, Pitman Research Notes Math., vol. 182, Longman House, Harlow, 1989. | MR | Zbl
,[4] Isoperimetric Inequalities and Applications, Pitman Monographs Studies Math., vol. 7, Pitman, 1980. | MR | Zbl
,[5] Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differential Equations 6 (1998) 1-38. | MR | Zbl
, ,[6] Mathematical Problems from Combustion Theory, Springer, Berlin, 1989. | MR | Zbl
, ,[7] A note on the Sobolev inequality, J. Funct. Anal. 100 (1991) 18-24. | MR | Zbl
, ,
[8] Uniform estimates and blow-up behavior for solutions of
[9] A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys. 143 (1992) 501-525. | MR | Zbl
, , , ,[10] A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Part II, Comm. Math. Phys. 174 (1995) 229-260. | MR | Zbl
, , , ,[11] The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys. 215 (2000) 119-142. | MR | Zbl
, ,[12] D. Chae, G. Tarantello, On planar electroweak vortices, Ann. Inst. H. Poincaré Analyse Non Linéaire, in press.
[13] An Introduction to the Study of Stellar Structure, Dover, New York, 1957. | MR | Zbl
,[14] Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991) 615-623. | MR | Zbl
, ,[15] Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math. 56 (2003) 1667-1727. | MR | Zbl
, ,[16] On the simmetry of blowup solutions to a mean field equation, Ann. Inst. H. Poincaré Analyse Non Linéaire 18 (2001) 271-296. | Numdam | MR | Zbl
, ,[17] M. Del Pino, M. Kowalczyk, M. Musso, Singular limits in Liouville-type equation, preprint. | MR
[18] On the uniqueness of the positive solution of a singularly perturbed problem, Rocky Mountain J. Math. 25 (1995) 957-975. | MR | Zbl
,[19] Existence results for mean field equations, Ann. Inst. H. Poincaré Analyse Non Linéaire 16 (1999) 653-666. | Numdam | MR | Zbl
, , , ,[20] K. El Mehdi, M. Grossi, Asymptotic estimates and qualitative properties of an elliptic problem in dimension two, preprint. | MR
[21] P. Esposito, Blow up solutions for a Liouville equation with singular data, preprint, 2003. | MR
[22] P. Esposito, A class of Liouville-type equations arising in Chern-Simons vortex theory: asymptotics and construction of blowing up solutions, Thesis, Roma “Tor Vergata”, 2003.
[23] Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl. 29 (1969) 295-381. | MR | Zbl
,[24] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. | MR | Zbl
, ,[25] On the effect of critical points of distance function in superlinear elliptic problems, Adv. Differential Equations 5 (2000) 1397-1420. | MR | Zbl
, ,[26] On a singularly perturbed elliptic equation, Adv. Differential Equations 2 (1997) 955-980. | MR | Zbl
,
[27] Sur l’équation aud dérivées partielles
[28] Convergence for a Liouville equation, Comment. Math. Helv. 76 (2001) 506-514. | MR | Zbl
, ,[29] Equations of gas combustion: S-shaped bifurcation and mushrooms, J. Differential Equations 134 (1997) 183-215. | MR | Zbl
, ,[30] Asymptotic solutions for a Dirichlet problem with an exponential nonlinearity, SIAM J. Math. Anal. 14 (1983) 719-735. | MR | Zbl
,[31] A two-dimensional Dirichlet problem with an exponential nonlinearity, SIAM J. Math. Anal. 14 (1983) 934-946. | MR | Zbl
,[32] A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71) 1077-1092. | MR | Zbl
,[33] Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent, Indiana Univ. Math. J. 51 (2002) 541-579. | MR | Zbl
, ,[34] Mathematical Biology, Springer, Berlin, 1989.
,[35] Asymptotic analysis for a two dimensional elliptic eigenvalue problem with exponentially dominated nonlinearity, Asymptotic Anal. 3 (1990) 173-188. | MR | Zbl
, ,[36] Non-topological N-vortex condensates for the self-dual Chern-Simons theory, Comm. Pure Appl. Math. 56 (2003) 1752-1780. | MR | Zbl
,[37] The role of Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990) 1-52. | MR | Zbl
,[38] Two dimensional Emden-Fowler equation with exponential nonlinearity, Nonlinear Diffusion Equations and their Equilibrium States 3 (1992) 493-512. | MR | Zbl
,[39] Global analysis for a two-dimensional eigenvalue problem with exponential nonlinearity, Ann. Inst. H. Poincaré Analyse Non Linéaire 9 (1992) 367-398. | Numdam | MR | Zbl
,[40] On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967) 473-483. | MR | Zbl
,[41] On the asymptotic solution of a partial differential equation with exponential nonlinearity, SIAM J. Math. Anal. 9 (1978) 1030-1053. | MR | Zbl
,- Determination of Stable Branches of Relative Equilibria of the N-Vortex Problem on the Sphere, Communications in Mathematical Physics, Volume 406 (2025) no. 2 | DOI:10.1007/s00220-024-05220-2
- On the construction of non-simple blow-up solutions for the singular Liouville equation with a potential, Calculus of Variations and Partial Differential Equations, Volume 63 (2024) no. 3 | DOI:10.1007/s00526-024-02676-x
- Bubbling solutions for mean field equations with variable intensities on compact Riemann surfaces, Journal d'Analyse Mathématique, Volume 152 (2024) no. 2, p. 507 | DOI:10.1007/s11854-023-0303-2
- On the critical points of solutions of PDE in non-convex settings: The case of concentrating solutions, Journal of Functional Analysis, Volume 287 (2024) no. 11, p. 110620 | DOI:10.1016/j.jfa.2024.110620
- Positive solutions for nonlocal differential equations with concave and convex coefficients, Positivity, Volume 28 (2024) no. 5 | DOI:10.1007/s11117-024-01086-9
- The Morse Property of Limit Functions Appearing in Mean Field Equations on Surfaces with Boundary, The Journal of Geometric Analysis, Volume 34 (2024) no. 7 | DOI:10.1007/s12220-024-01664-z
- DOI:10.2139/ssrn.4354199 , 2023 |
- Cosmic voids and the kinetic analysis, Astronomy Astrophysics, Volume 672 (2023), p. A95 | DOI:10.1051/0004-6361/202346139
- Uniqueness, multiplicity and nondegeneracy of positive solutions to the Lane-Emden problem, Journal de Mathématiques Pures et Appliquées, Volume 179 (2023), p. 1 | DOI:10.1016/j.matpur.2023.09.001
- Sign-changing bubble tower solutions for sinh-Poisson type equations on pierced domains, Journal of Differential Equations, Volume 367 (2023), p. 494 | DOI:10.1016/j.jde.2023.05.013
- Determinism of genesis of large-scale structures in astrophysics, Keldysh Institute Preprints (2023) no. 67, p. 1 | DOI:10.20948/prepr-2023-67
- Two New Functional Inequalities and Their Application to the Eventual Smoothness of Solutions to a Chemotaxis-Navier–Stokes System with Rotational Flux, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 6, p. 7113 | DOI:10.1137/22m1531178
- Singular Limit Solutions for a
-dimensional Emden–Fowler System of Liouville Type in Some General Case, Taiwanese Journal of Mathematics, Volume 27 (2023) no. 2 | DOI:10.11650/tjm/221202 - Sign-changing blow-up for the Moser–Trudinger equation, Journal of Functional Analysis, Volume 282 (2022) no. 2, p. 109288 | DOI:10.1016/j.jfa.2021.109288
- Non-symmetric blowing-up solutions for a class of Liouville equations in the ball, Journal of Mathematical Physics, Volume 63 (2022) no. 2 | DOI:10.1063/5.0064197
- Singular limiting radial solutions for 4-dimensional elliptic problem involving exponentially dominated nonlinearity, Mathematical Reports, Volume 25(75) (2022) no. 1, p. 23 | DOI:10.59277/mrar.2023.25.75.1.23
- Existence and monotonicity of nonlocal boundary value problems: the one-dimensional case, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 152 (2022) no. 1, p. 1 | DOI:10.1017/prm.2020.90
- A note on a sinh-Poisson type equation with variable intensities on pierced domains, Asymptotic Analysis, Volume 122 (2021) no. 3-4, p. 327 | DOI:10.3233/asy-201620
- Discrete Kirchhoff equations with sign-changing coefficients, Journal of Difference Equations and Applications, Volume 27 (2021) no. 5, p. 664 | DOI:10.1080/10236198.2021.1929945
- Topological analysis of doubly nonlocal boundary value problems, Journal of Fixed Point Theory and Applications, Volume 23 (2021) no. 2 | DOI:10.1007/s11784-021-00865-1
- Bubbling nodal solutions for a large perturbation of the Moser–Trudinger equation on planar domains, Mathematische Annalen, Volume 380 (2021) no. 1-2, p. 643 | DOI:10.1007/s00208-020-01975-w
- A topological approach to nonlocal elliptic partial differential equations on an annulus, Mathematische Nachrichten, Volume 294 (2021) no. 2, p. 286 | DOI:10.1002/mana.201900204
- A monotonicity result under symmetry and Morse index constraints in the plane, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 151 (2021) no. 3, p. 885 | DOI:10.1017/prm.2020.43
- Sign-Changing Solutions for the One-Dimensional Non-Local sinh-Poisson Equation, Advanced Nonlinear Studies, Volume 20 (2020) no. 4, p. 739 | DOI:10.1515/ans-2020-2103
- Existence of solutions for some weighted mean field equations in dimension N, Applied Mathematics Letters, Volume 100 (2020), p. 106010 | DOI:10.1016/j.aml.2019.106010
- Nonlocal difference equations with sign-changing coefficients, Applied Mathematics Letters, Volume 106 (2020), p. 106371 | DOI:10.1016/j.aml.2020.106371
- Gluing Methods for Vortex Dynamics in Euler Flows, Archive for Rational Mechanics and Analysis, Volume 235 (2020) no. 3, p. 1467 | DOI:10.1007/s00205-019-01448-8
- The nonlocal mean-field equation on an interval, Communications in Contemporary Mathematics, Volume 22 (2020) no. 05, p. 1950028 | DOI:10.1142/s0219199719500287
- Maximal entropy solutions under prescribed mass and energy, Journal of Differential Equations, Volume 268 (2020) no. 11, p. 6646 | DOI:10.1016/j.jde.2019.11.040
- Local uniqueness and non-degeneracy of blow up solutions of mean field equations with singular data, Journal of Differential Equations, Volume 269 (2020) no. 3, p. 2057 | DOI:10.1016/j.jde.2020.01.030
- Bubbling solutions for the Liouville equation with a singular source: Non-simple blow-up, Journal of Functional Analysis, Volume 279 (2020) no. 6, p. 108605 | DOI:10.1016/j.jfa.2020.108605
- Eigenvalues of Elliptic Functional Differential Systems via a Birkhoff–Kellogg Type Theorem, Mathematics, Volume 9 (2020) no. 1, p. 4 | DOI:10.3390/math9010004
- Singular limit solutions for a 2-dimensional semilinear elliptic system of Liouville type in some general case adding singular sources (Part I), Nonlinear Analysis, Volume 196 (2020), p. 111799 | DOI:10.1016/j.na.2020.111799
- Concentrating solutions for a planar elliptic problem with large nonlinear exponent and Robin boundary condition, Advances in Nonlinear Analysis, Volume 8 (2019) no. 1, p. 1252 | DOI:10.1515/anona-2015-0153
- Existence of bubbling solutions without mass concentration, Annales de l'Institut Fourier, Volume 69 (2019) no. 2, p. 895 | DOI:10.5802/aif.3261
- Construction of singular limits for a strongly perturbed four-dimensional Navier problem with exponentially dominated nonlinearity and nonlinear terms, Boundary Value Problems, Volume 2019 (2019) no. 1 | DOI:10.1186/s13661-019-1244-7
- Global bifurcation analysis of mean field equations and the Onsager microcanonical description of two-dimensional turbulence, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 1 | DOI:10.1007/s00526-018-1445-4
- Non-uniqueness of blowing-up solutions to the Gelfand problem, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 5 | DOI:10.1007/s00526-019-1607-z
- Local uniqueness of m-bubbling sequences for the Gel’fand equation, Communications in Partial Differential Equations, Volume 44 (2019) no. 6, p. 447 | DOI:10.1080/03605302.2019.1581801
- Uniqueness of bubbling solutions of mean field equations, Journal de Mathématiques Pures et Appliquées, Volume 123 (2019), p. 78 | DOI:10.1016/j.matpur.2018.12.002
- Blow-up phenomena for the Liouville equation with a singular source of integer multiplicity, Journal of Differential Equations, Volume 266 (2019) no. 11, p. 7379 | DOI:10.1016/j.jde.2018.12.005
- Nonzero positive solutions of nonlocal elliptic systems with functional BCs, Journal of Elliptic and Parabolic Equations, Volume 5 (2019) no. 2, p. 493 | DOI:10.1007/s41808-019-00049-6
- Uniqueness of bubbling solutions with collapsing singularities, Journal of Functional Analysis, Volume 277 (2019) no. 2, p. 522 | DOI:10.1016/j.jfa.2019.02.002
- Maximal solution of the Liouville equation in doubly connected domains, Journal of Functional Analysis, Volume 277 (2019) no. 9, p. 2997 | DOI:10.1016/j.jfa.2019.06.013
- Uniform bounds for solutions to elliptic problems on simply connected planar domains, Proceedings of the American Mathematical Society, Volume 147 (2019) no. 10, p. 4289 | DOI:10.1090/proc/14482
- Singular limit solutions for 2-dimensional elliptic system with sub-quadrtatic convection term, Acta Mathematica Scientia, Volume 38 (2018) no. 4, p. 1174 | DOI:10.1016/s0252-9602(18)30807-5
- Non-degeneracy, Mean Field Equations and the Onsager Theory of 2D Turbulence, Archive for Rational Mechanics and Analysis, Volume 230 (2018) no. 1, p. 397 | DOI:10.1007/s00205-018-1248-y
- A multi-species chemotaxis system: Lyapunov functionals, duality, critical mass, European Journal of Applied Mathematics, Volume 29 (2018) no. 3, p. 515 | DOI:10.1017/s0956792517000286
- Bubbling solutions for Moser–Trudinger type equations on compact Riemann surfaces, Journal of Functional Analysis, Volume 275 (2018) no. 10, p. 2684 | DOI:10.1016/j.jfa.2018.08.016
- Bubbling solutions for an anisotropic planar elliptic problem with exponential nonlinearity, Nonlinear Analysis, Volume 174 (2018), p. 141 | DOI:10.1016/j.na.2018.04.011
- Free boundary problems arising in the theory of maximal solutions of equations with exponential nonlinearities, Séminaire Laurent Schwartz — EDP et applications (2018), p. 1 | DOI:10.5802/slsedp.122
- Theory of “Critical Points at Infinity” and a Resonant Singular Liouville-Type Equation, Advanced Nonlinear Studies, Volume 17 (2017) no. 1, p. 139 | DOI:10.1515/ans-2016-6016
- Boundary bubbling solutions for a planar elliptic problem with exponential Neumann data, Discrete Continuous Dynamical Systems - A, Volume 37 (2017) no. 10, p. 5467 | DOI:10.3934/dcds.2017238
- Sign-changing tower of bubbles for a sinh-Poisson equation with asymmetric exponents, Discrete Continuous Dynamical Systems - A, Volume 37 (2017) no. 11, p. 5651 | DOI:10.3934/dcds.2017245
- On a resonant mean field type equation: A "critical point at Infinity" approach, Discrete Continuous Dynamical Systems - A, Volume 37 (2017) no. 4, p. 1789 | DOI:10.3934/dcds.2017075
- Blow-up analysis for a cosmic strings equation, Journal of Functional Analysis, Volume 272 (2017) no. 1, p. 255 | DOI:10.1016/j.jfa.2016.10.009
- Minimal blow-up masses and existence of solutions for an asymmetric sinh-Poisson equation, Mathematische Nachrichten, Volume 290 (2017) no. 14-15, p. 2375 | DOI:10.1002/mana.201600215
- Existence of stationary turbulent flows with variable positive vortex intensity, Nonlinear Analysis: Real World Applications, Volume 38 (2017), p. 222 | DOI:10.1016/j.nonrwa.2017.04.013
- On the Blow-Up of Solutions to Liouville-Type Equations, Advanced Nonlinear Studies, Volume 16 (2016) no. 1, p. 75 | DOI:10.1515/ans-2015-5015
- Boundary concentration phenomena for the higher-dimensional Keller–Segel system, Calculus of Variations and Partial Differential Equations, Volume 55 (2016) no. 6 | DOI:10.1007/s00526-016-1083-7
- Existence and symmetry for elliptic equations in ℝ n with arbitrary growth in the gradient, Journal d'Analyse Mathématique, Volume 130 (2016) no. 1, p. 1 | DOI:10.1007/s11854-016-0027-7
- New blow-up phenomena for SU(n+ 1) Toda system, Journal of Differential Equations, Volume 260 (2016) no. 7, p. 6232 | DOI:10.1016/j.jde.2015.12.036
- Equilibria for the N-vortex-problem in a general bounded domain, Journal of Mathematical Analysis and Applications, Volume 433 (2016) no. 2, p. 1531 | DOI:10.1016/j.jmaa.2015.08.055
- Concentrating solutions for a Liouville type equation with variable intensities in 2D-turbulence, Nonlinearity, Volume 29 (2016) no. 2, p. 271 | DOI:10.1088/0951-7715/29/2/271
- A general existence result for the Toda system on compact surfaces, Advances in Mathematics, Volume 285 (2015), p. 937 | DOI:10.1016/j.aim.2015.07.036
- A topological join construction and the Toda system on compact surfaces of arbitrary genus, Analysis PDE, Volume 8 (2015) no. 8, p. 1963 | DOI:10.2140/apde.2015.8.1963
- Supercritical Mean Field Equations on Convex Domains and the Onsager’s Statistical Description of Two-Dimensional Turbulence, Archive for Rational Mechanics and Analysis, Volume 217 (2015) no. 2, p. 525 | DOI:10.1007/s00205-014-0836-8
- Large conformal metrics with prescribed sign-changing Gauss curvature, Calculus of Variations and Partial Differential Equations, Volume 54 (2015) no. 1, p. 763 | DOI:10.1007/s00526-014-0805-y
- Nontopological Condensates for the Self‐Dual Chern‐Simons‐Higgs Model, Communications on Pure and Applied Mathematics, Volume 68 (2015) no. 7, p. 1191 | DOI:10.1002/cpa.21548
- Concentrating solutions for an anisotropic elliptic problem with large exponent, Discrete Continuous Dynamical Systems - A, Volume 35 (2015) no. 8, p. 3771 | DOI:10.3934/dcds.2015.35.3771
- On a quasilinear mean field equation with an exponential nonlinearity, Journal de Mathématiques Pures et Appliquées, Volume 104 (2015) no. 2, p. 354 | DOI:10.1016/j.matpur.2015.03.001
- Symmetric equilibria for the N-vortex problem, Journal of Fixed Point Theory and Applications, Volume 17 (2015) no. 3, p. 597 | DOI:10.1007/s11784-015-0242-3
- Sign-changing blow-up solutions for Hénon type elliptic equations with exponential nonlinearity, Journal of Functional Analysis, Volume 268 (2015) no. 8, p. 2067 | DOI:10.1016/j.jfa.2015.02.009
- Existence and multiplicity result for the singular Toda system, Journal of Mathematical Analysis and Applications, Volume 424 (2015) no. 1, p. 49 | DOI:10.1016/j.jmaa.2014.10.081
- Asymptotic estimates for the least energy solution of a planar semi-linear Neumann problem, Journal of Mathematical Analysis and Applications, Volume 428 (2015) no. 1, p. 258 | DOI:10.1016/j.jmaa.2015.03.031
- Multiple blow-up solutions for an exponential nonlinearity with potential in R2, Nonlinear Analysis: Theory, Methods Applications, Volume 119 (2015), p. 419 | DOI:10.1016/j.na.2014.10.034
- Concentrating solutions for an exponential nonlinearity with Robin boundary condition, Nonlinear Analysis: Theory, Methods Applications, Volume 129 (2015), p. 294 | DOI:10.1016/j.na.2015.09.004
- Blow up solutions for a Liouville equation with Hénon term, Nonlinear Analysis: Theory, Methods Applications, Volume 129 (2015), p. 320 | DOI:10.1016/j.na.2015.09.018
- Singular limits in higher order Liouville-type equations, Nonlinear Differential Equations and Applications NoDEA, Volume 22 (2015) no. 6, p. 1545 | DOI:10.1007/s00030-015-0335-0
- Multiple blow-up solutions for an anisotropic Emden Fowler equation in
, Nonlinearity, Volume 28 (2015) no. 6, p. 1761 | DOI:10.1088/0951-7715/28/6/1761 - A continuum of solutions for the SU(3) Toda System exhibiting partial blow-up: Figure 1., Proceedings of the London Mathematical Society, Volume 111 (2015) no. 4, p. 797 | DOI:10.1112/plms/pdv042
- Critical Points of the
-vortex Hamiltonian in Bounded Planar Domains and Steady State Solutions of the Incompressible Euler Equations, SIAM Journal on Applied Mathematics, Volume 75 (2015) no. 2, p. 726 | DOI:10.1137/140981253 - Singular limits for Liouville-type equations on the flat two-torus, Calculus of Variations and Partial Differential Equations, Volume 49 (2014) no. 1-2, p. 613 | DOI:10.1007/s00526-012-0594-0
- Morse Indices of Multiple Blow-Up Solutions to the Two-Dimensional Gel'fand Problem, Communications in Partial Differential Equations, Volume 39 (2014) no. 11, p. 2028 | DOI:10.1080/03605302.2014.930485
- On the location of two blowup points on an annulus for the mean field equation, Comptes Rendus. Mathématique, Volume 352 (2014) no. 7-8, p. 615 | DOI:10.1016/j.crma.2014.04.006
- On some properties of mean fields of equilibrium vortices described by the Hamiltonian, Fluid Dynamics Research, Volume 46 (2014) no. 3, p. 031422 | DOI:10.1088/0169-5983/46/3/031422
- New concentration phenomena forSU(3)Toda system, Journal of Differential Equations, Volume 256 (2014) no. 4, p. 1548 | DOI:10.1016/j.jde.2013.11.006
- Bubbling solutions for an exponential nonlinearity inR2, Journal of Differential Equations, Volume 257 (2014) no. 7, p. 2259 | DOI:10.1016/j.jde.2014.05.034
- Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian, Journal of Functional Analysis, Volume 266 (2014) no. 11, p. 6531 | DOI:10.1016/j.jfa.2014.02.029
- Existence and uniqueness for mean field equations on multiply connected domains at the critical parameter, Mathematische Annalen, Volume 359 (2014) no. 1-2, p. 1 | DOI:10.1007/s00208-013-0990-6
- Singular mean field equations on compact Riemann surfaces, Nonlinear Analysis: Theory, Methods Applications, Volume 111 (2014), p. 33 | DOI:10.1016/j.na.2014.08.006
- Non Degeneracy of Critical Points of the Robin Function with Respect to Deformations of the Domain, Potential Analysis, Volume 40 (2014) no. 2, p. 103 | DOI:10.1007/s11118-013-9340-2
- Mean field equations with probability measure in 2D-turbulence, Ricerche di Matematica, Volume 63 (2014) no. S1, p. 255 | DOI:10.1007/s11587-014-0208-6
- Construction of Nodal Bubbling Solutions for the Weighted Sinh-Poisson Equation, Abstract and Applied Analysis, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/873948
- Existence of Bubbling Solutions for Chern–Simons Model on a Torus, Archive for Rational Mechanics and Analysis, Volume 207 (2013) no. 2, p. 353 | DOI:10.1007/s00205-012-0575-7
- SINGULAR LIMITS FOR 2-DIMENSIONAL ELLIPTIC NEUMANN PROBLEM WITH EXPONENTIAL NONLINEARITY AND SINGULAR DATA, Communications in Contemporary Mathematics, Volume 15 (2013) no. 05, p. 1350024 | DOI:10.1142/s0219199713500247
- Multiple Blow-Up Solutions for the Liouville Equation with Singular Data, Communications in Partial Differential Equations, Volume 38 (2013) no. 8, p. 1409 | DOI:10.1080/03605302.2013.799487
- SINGULAR LIMITS FOR 2-DIMENSIONAL ELLIPTIC PROBLEMS INVOLVING EXPONENTIAL NONLINEARITIES WITH SUB-QUADRATIC CONVECTION TERM, Glasgow Mathematical Journal, Volume 55 (2013) no. 3, p. 537 | DOI:10.1017/s0017089512000729
- Singular Limits in Liouville-Type Equations with Mixed Interior and Boundary Singular Sources, International Journal of Theoretical Physics, Volume 52 (2013) no. 6, p. 1925 | DOI:10.1007/s10773-012-1331-3
- Singular limits solution for two-dimensional elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights, Annali di Matematica Pura ed Applicata, Volume 191 (2012) no. 4, p. 845 | DOI:10.1007/s10231-012-0281-y
- Multiple blowing-up and concentrating solutions for Liouville-type equations with singular sources under mixed boundary conditions, Boundary Value Problems, Volume 2012 (2012) no. 1 | DOI:10.1186/1687-2770-2012-33
- Beyond the Trudinger-Moser supremum, Calculus of Variations and Partial Differential Equations, Volume 44 (2012) no. 3-4, p. 543 | DOI:10.1007/s00526-011-0444-5
- Point Ruptures for a MEMS Equation with Fringing Field, Communications in Partial Differential Equations, Volume 37 (2012) no. 8, p. 1462 | DOI:10.1080/03605302.2012.679990
- STABLE AND UNSTABLE EQUILIBRIA OF UNIFORMLY ROTATING SELF-GRAVITATING CYLINDERS, International Journal of Modern Physics D, Volume 21 (2012) no. 13, p. 1250087 | DOI:10.1142/s0218271812500873
- Concentrating solutions of the Liouville equation with Robin boundary condition, Journal of Differential Equations, Volume 252 (2012) no. 3, p. 2648 | DOI:10.1016/j.jde.2011.09.036
- Sharp existence results for mean field equations with singular data, Journal of Differential Equations, Volume 252 (2012) no. 7, p. 4115 | DOI:10.1016/j.jde.2011.12.014
- Mixed interior and boundary bubbling solutions for Neumann problem in R2, Journal of Differential Equations, Volume 253 (2012) no. 2, p. 727 | DOI:10.1016/j.jde.2012.04.012
- Deformation retracts to the fat diagonal and applications to the existence of peak solutions of nonlinear elliptic equations, Pacific Journal of Mathematics, Volume 256 (2012) no. 1, p. 67 | DOI:10.2140/pjm.2012.256.67
- Singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term, Boundary Value Problems, Volume 2011 (2011) no. 1 | DOI:10.1186/1687-2770-2011-10
- SINGULAR LIMITS FOR 2-DIMENSIONAL ELLIPTIC PROBLEM WITH EXPONENTIALLY DOMINATED NONLINEARITY AND SINGULAR DATA, Communications in Contemporary Mathematics, Volume 13 (2011) no. 04, p. 697 | DOI:10.1142/s0219199711004282
- Uniqueness and symmetry results for solutions of a mean field equation on 𝕊2 via a new bubbling phenomenon, Communications on Pure and Applied Mathematics, Volume 64 (2011) no. 12, p. 1677 | DOI:10.1002/cpa.20385
- A “Sup + C Inf” inequality for Liouville-type equations with singular potentials, Mathematische Nachrichten, Volume 284 (2011) no. 13, p. 1639 | DOI:10.1002/mana.200810250
- Singular limits for 2-dimensional elliptic problem involving exponential nonlinearity with nonlinear gradient term, Nonlinear Differential Equations and Applications NoDEA, Volume 18 (2011) no. 1, p. 59 | DOI:10.1007/s00030-010-0084-z
- Changing-sign bubble solutions for an anisotropic sinh-Poisson equation, Nonlinear Differential Equations and Applications NoDEA, Volume 18 (2011) no. 6, p. 685 | DOI:10.1007/s00030-011-0113-6
- Nondegeneracy of entire solutions of a singular Liouvillle equation, Proceedings of the American Mathematical Society, Volume 140 (2011) no. 2, p. 581 | DOI:10.1090/s0002-9939-2011-11134-1
- On the Classification of N-Points Concentrating Solutions for Mean Field Equations and the Symmetry Properties of the N-Vortex Singular Hamiltonian on the Unit Disk, Acta Applicandae Mathematicae, Volume 110 (2010) no. 1, p. 1 | DOI:10.1007/s10440-008-9376-2
- N-Vortex Equilibria for Ideal Fluids in Bounded Planar Domains and New Nodal Solutions of the sinh-Poisson and the Lane-Emden-Fowler Equations, Communications in Mathematical Physics, Volume 297 (2010) no. 3, p. 653 | DOI:10.1007/s00220-010-1053-4
- New solutions for Trudinger–Moser critical equations in R2, Journal of Functional Analysis, Volume 258 (2010) no. 2, p. 421 | DOI:10.1016/j.jfa.2009.06.018
- Nonexistence of multi-bubble solutions to some elliptic equations on convex domains, Journal of Functional Analysis, Volume 259 (2010) no. 4, p. 904 | DOI:10.1016/j.jfa.2010.03.008
- ASYMPTOTIC BEHAVIOR OF BLOWUP SOLUTIONS FOR ELLIPTIC EQUATIONS WITH EXPONENTIAL NONLINEARITY AND SINGULAR DATA, Communications in Contemporary Mathematics, Volume 11 (2009) no. 03, p. 395 | DOI:10.1142/s0219199709003417
- Uniqueness Results for Mean Field Equations with Singular Data, Communications in Partial Differential Equations, Volume 34 (2009) no. 7, p. 676 | DOI:10.1080/03605300902910089
- On Some Elliptic Problems in the Study of Selfdual Chern-Simons Vortices, Geometric Analysis and PDEs, Volume 1977 (2009), p. 117 | DOI:10.1007/978-3-642-01674-5_4
- Solutions with spikes at the boundary for a 2D nonlinear Neumann problem with large exponent, Journal of Differential Equations, Volume 246 (2009) no. 8, p. 2991 | DOI:10.1016/j.jde.2009.02.001
- Analysis of boundary bubbling solutions for an anisotropic Emden–Fowler equation, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 25 (2008) no. 3, p. 425 | DOI:10.1016/j.anihpc.2007.02.001
- Singular limits for the bi-Laplacian operator with exponential nonlinearity in
, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 25 (2008) no. 5, p. 1015 | DOI:10.1016/j.anihpc.2007.09.002 - Nonlinear Eigenvalue Problem with Quantization, Handbook of Differential Equations - Stationary Partial Differential Equations, Volume 5 (2008), p. 277 | DOI:10.1016/s1874-5733(08)80011-3
- Radial solutions for the Brezis–Nirenberg problem involving large nonlinearities, Journal of Functional Analysis, Volume 254 (2008) no. 12, p. 2995 | DOI:10.1016/j.jfa.2008.03.007
- Critical points of the regular part of the harmonic Green function with Robin boundary condition, Journal of Functional Analysis, Volume 255 (2008) no. 5, p. 1057 | DOI:10.1016/j.jfa.2007.11.023
- Singular limits for a 4-dimensional semilinear elliptic problem with exponential nonlinearity, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 24 (2007) no. 6, p. 875 | DOI:10.1016/j.anihpc.2006.06.009
- Blow‐up analysis, existence and qualitative properties of solutions for the two‐dimensional Emden–Fowler equation with singular potential, Mathematical Methods in the Applied Sciences, Volume 30 (2007) no. 18, p. 2309 | DOI:10.1002/mma.887
- On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity, Proceedings of the London Mathematical Society, Volume 94 (2007) no. 2, p. 497 | DOI:10.1112/plms/pdl020
- Chapter 3 Bubbling in nonlinear elliptic problems near criticality, Volume 3 (2006), p. 215 | DOI:10.1016/s1874-5733(06)80007-0
- Singular Limits of a Two-Dimensional Boundary Value Problem Arising in Corrosion Modelling, Archive for Rational Mechanics and Analysis, Volume 182 (2006) no. 2, p. 181 | DOI:10.1007/s00205-006-0421-x
- Bubbling solutions for an anisotropic Emden–Fowler equation, Calculus of Variations and Partial Differential Equations, Volume 28 (2006) no. 2, p. 217 | DOI:10.1007/s00526-006-0044-y
- Bubbling solutions for an anisotropic Emden–Fowler equation, Comptes Rendus. Mathématique, Volume 343 (2006) no. 4, p. 253 | DOI:10.1016/j.crma.2006.05.017
- Concentrating Solutions for a Two-dimensional Elliptic Problem with Large Exponent in Nonlinearity, Free Boundary Problems, Volume 154 (2006), p. 351 | DOI:10.1007/978-3-7643-7719-9_34
- Concentrating solutions for the Hénon equation in ℝ2, Journal d'Analyse Mathématique, Volume 100 (2006) no. 1, p. 249 | DOI:10.1007/bf02916763
- Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent, Journal of Differential Equations, Volume 227 (2006) no. 1, p. 29 | DOI:10.1016/j.jde.2006.01.023
- The two-dimensional Lazer–McKenna conjecture for an exponential nonlinearity, Journal of Differential Equations, Volume 231 (2006) no. 1, p. 108 | DOI:10.1016/j.jde.2006.07.003
- Variational reduction for Ginzburg–Landau vortices, Journal of Functional Analysis, Volume 239 (2006) no. 2, p. 497 | DOI:10.1016/j.jfa.2006.07.006
- On the shape of blow-up solutions to a mean field equation, Nonlinearity, Volume 19 (2006) no. 3, p. 611 | DOI:10.1088/0951-7715/19/3/005
- Collapsing steady states of the Keller–Segel system, Nonlinearity, Volume 19 (2006) no. 3, p. 661 | DOI:10.1088/0951-7715/19/3/007
- Concentrating solutions in a two-dimensional elliptic problem with exponential Neumann data, Journal of Functional Analysis, Volume 227 (2005) no. 2, p. 430 | DOI:10.1016/j.jfa.2005.06.010
Cité par 143 documents. Sources : Crossref