@article{AIHPC_2001__18_3_271_0, author = {Chen, Chuin Chuan and Lin, Chang-Shou}, title = {On the symmetry of blowup solutions to a mean field equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {271--296}, publisher = {Elsevier}, volume = {18}, number = {3}, year = {2001}, mrnumber = {1831657}, zbl = {0995.35004}, language = {en}, url = {http://www.numdam.org/item/AIHPC_2001__18_3_271_0/} }
TY - JOUR AU - Chen, Chuin Chuan AU - Lin, Chang-Shou TI - On the symmetry of blowup solutions to a mean field equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2001 SP - 271 EP - 296 VL - 18 IS - 3 PB - Elsevier UR - http://www.numdam.org/item/AIHPC_2001__18_3_271_0/ LA - en ID - AIHPC_2001__18_3_271_0 ER -
Chen, Chuin Chuan; Lin, Chang-Shou. On the symmetry of blowup solutions to a mean field equation. Annales de l'I.H.P. Analyse non linéaire, Tome 18 (2001) no. 3, pp. 271-296. http://www.numdam.org/item/AIHPC_2001__18_3_271_0/
[1] Isoperimetric Inequalities and Applications, Pitman, Boston, 1980. | MR | Zbl
,[2] Uniform estimates and blow-up behavior for solutions of −Δu=V(x)eu in two dimensions, Comm. Partial Differential Equations 16 (1991) 1223-1254. | Zbl
, ,[3] A sup + inf inequality for some nonlinear elliptic equations involving exponential nonlinearities, J. Functional Anal. 115 (1993) 344-358. | MR | Zbl
, , ,[4] Vortex condensation in the Chern-Simons Higgs model: An existence theorem, Comm. Math. Phys. 168 (1995) 321-336. | Zbl
, ,[5] Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Comm. Math. Phys. 160 (1994) 217-238. | MR | Zbl
, ,[6] A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Comm. Math. Phys. 143 (1992) 501-525. | MR | Zbl
, , , ,[7] A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, part II, Comm. Math. Phys. 174 (1995) 229-260. | MR | Zbl
, , , ,[8] A sharp sup+inf inequality for a nonlinear equation in R2, Comm. Anal. Geom. 6 (1998) 1-19. | MR | Zbl
, ,[9] Chen C.C., Lin C.S., Singular limits of a nonlinear eigenvalue problem in two dimensions, preprint.
[10] Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991) 615-623. | MR | Zbl
, ,[11] The differential equation Δu=8π−8πheu on a compact Riemann surface, Asian J. Math. 1 (1997) 230-248. | MR | Zbl
, , , ,[12] Ding W., Jost J., Li J., Wang G., Existence results for mean field equations, preprint.
[13] Symmetry of positive solutions of nonlinear elliptic equations in Rn, in: (Ed.), Math. Anal. and Applications, Part A, Advances in Math. Suppl. Studies 7A, Academic Press, New York, 1981, pp. 369-402. | MR | Zbl
, , ,[14] Harnack type inequality: the method of moving planes, Comm. Math. Phys. 200 (1999) 421-444. | MR | Zbl
,[15] Blowup analysis for solutions −Δu=Veu in dimension two, Indiana Univ. Math. J. 43 (1994) 1255-1270. | MR | Zbl
, ,[16] The topological degree for the mean field equation on S2, Duke Math. J. 104 (2000) 501-536. | MR | Zbl
,[17] Asymptotic solutions for a Dirichlet problem with an exponential nonlinearity, SIAM J. Math. Anal. 14 (1983) 719-735. | MR | Zbl
,[18] A two-dimensional Dirichlet problem with an exponential nonlinearity, SIAM J. Math. Anal. 14 (1983) 934-946. | MR | Zbl
,[19] Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearity, Asymptotic Analysis 3 (1990) 173-188. | MR | Zbl
, ,[20] On a sharp type inequality on two dimensional compact manifolds, Arch. Rational Mech. Anal. 145 (1998) 161-195. | MR | Zbl
, ,[21] Topological solutions in the self-dual Chern-Simons theory: existence and approximation, Ann. Inst. H. Poincáre Anal. Non Linéaire 12 (1995) 75-97. | EuDML | Numdam | MR | Zbl
, ,[22] On multivortex solutions in Chern-Simons Gauge theory, Boll. Unione Math. Ital. Sez. B Artic. Ric. Mat. 8 (1) (1998) 109-121. | EuDML | MR | Zbl
, ,[23] Global analysis for a two-dimensional elliptic eigenvalues problem with the exponential nonlinearity, Ann. Inst. Henri Poincaŕe, Anal. Non-Linéaire 9 (1992) 367-398. | EuDML | Numdam | MR | Zbl
,[24] Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys. 37 (1996) 3769-3796. | MR | Zbl
,[25] On the asymptotic solution of a partial differential equation with an exponential nonlinearity, SIAM J. Math. Anal. 9 (1978) 1030-1053. | MR | Zbl
,