Existence and nonexistence results for anisotropic quasilinear elliptic equations
Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 5, pp. 715-734.
@article{AIHPC_2004__21_5_715_0,
     author = {Fragal\`a, Ilaria and Gazzola, Filippo and Kawohl, Bernd},
     title = {Existence and nonexistence results for anisotropic quasilinear elliptic equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {715--734},
     publisher = {Elsevier},
     volume = {21},
     number = {5},
     year = {2004},
     doi = {10.1016/j.anihpc.2003.12.001},
     mrnumber = {2086756},
     zbl = {02116186},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2003.12.001/}
}
TY  - JOUR
AU  - Fragalà, Ilaria
AU  - Gazzola, Filippo
AU  - Kawohl, Bernd
TI  - Existence and nonexistence results for anisotropic quasilinear elliptic equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2004
SP  - 715
EP  - 734
VL  - 21
IS  - 5
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2003.12.001/
DO  - 10.1016/j.anihpc.2003.12.001
LA  - en
ID  - AIHPC_2004__21_5_715_0
ER  - 
%0 Journal Article
%A Fragalà, Ilaria
%A Gazzola, Filippo
%A Kawohl, Bernd
%T Existence and nonexistence results for anisotropic quasilinear elliptic equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2004
%P 715-734
%V 21
%N 5
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2003.12.001/
%R 10.1016/j.anihpc.2003.12.001
%G en
%F AIHPC_2004__21_5_715_0
Fragalà, Ilaria; Gazzola, Filippo; Kawohl, Bernd. Existence and nonexistence results for anisotropic quasilinear elliptic equations. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 5, pp. 715-734. doi : 10.1016/j.anihpc.2003.12.001. https://www.numdam.org/articles/10.1016/j.anihpc.2003.12.001/

[1] Acerbi E., Fusco N., Partial regularity under anisotropic (p,q) growth conditions, J. Differential Equations 107 (1994) 46-67. | MR | Zbl

[2] Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381. | MR | Zbl

[3] Belloni M., Kawohl B., The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p→∞, ESAIM COCV 10 (2004) 28-52. | Numdam | Zbl

[4] Brezis H., Kato T., Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. 58 (1979) 137-151. | MR | Zbl

[5] Cianchi A., Local boundedness of minimizers of anisotropic functionals, Ann. Inst. H. Poincaré ANL 17 (2000) 147-168. | Numdam | MR | Zbl

[6] Dal Maso G., Murat F., Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems, Nonlinear Anal. TMA 31 (1998) 405-412. | MR | Zbl

[7] Degiovanni M., Musesti A., Squassina M., On the regularity of solutions in the Pucci-Serrin identity, Calc. Var. Partial Differential Equations 18 (2003) 317-334. | MR | Zbl

[8] Egnell H., Existence and nonexistence results for m-Laplace equations involving critical Sobolev exponents, Arch. Rational Mech. Anal. 104 (1988) 57-77. | MR | Zbl

[9] Gazzola F., Critical exponents which relate embedding inequalities with quasilinear elliptic problems, in: Proc. 4th Int. Conf. Dyn. Syst. Diff. Eq., Wilmington, 2002, pp. 327-335. | MR | Zbl

[10] Giaquinta M., Growth conditions and regularity, a counterexample, Manuscripta Math. 59 (1987) 245-248. | MR | Zbl

[11] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. | MR | Zbl

[12] Guedda M., Veron L., Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. TMA 13 (1989) 879-902. | MR | Zbl

[13] Kolodii I.M., An estimate of the maximum of the modulus of generalized solutions of the Dirichlet problem, for elliptic equations of divergent form, Ukrainian Math. J. 47 (1995) 733-748. | MR | Zbl

[14] Kruzhkov S.N., Kolodii I.M., On the theory of embedding of anisotropic Sobolev spaces, Russian Math. Surveys 38 (1983) 188-189. | MR | Zbl

[15] Ladyzhenskaya O.A., Ural'Tseva N.N., Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. | MR | Zbl

[16] Lieberman G.M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. TMA 12 (1988) 1203-1219. | MR | Zbl

[17] Lieberman G.M., Gradient estimates for a new class of degenerate elliptic and parabolic equations, Ann. Sc. Norm. Sup. Pisa 21 (1994) 497-522. | Numdam | MR | Zbl

[18] Marcellini P., Regularity and existence of solutions of elliptic equations with p,q-growth conditions, J. Differential Equations 90 (1991) 1-30. | MR | Zbl

[19] Nikol'Skii S.M., On imbedding, continuation and approximation theorems for differentiable functions of several variables, Russian Math. Surv. 16 (1961) 55-104. | MR | Zbl

[20] Otani M., Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations, J. Funct. Anal. 76 (1988) 140-159. | MR | Zbl

[21] Pohožaev S.J., Eigenfunctions of the equation Δu+λf(u)=0, Soviet Math. Dokl. 6 (1965) 1408-1411.

[22] Pohožaev S.J., On the eigenfunction of quasilinear elliptic equations, Math. USSR Sbornik 11 (1970) 171-188.

[23] Pucci P., Serrin J., A general variational identity, Indiana Univ. Math. J. 35 (1986) 681-703. | MR | Zbl

[24] Rákosnik J., Some remarks to anisotropic Sobolev spaces I, Beiträge zur Analysis 13 (1979) 55-68. | MR | Zbl

[25] Rákosnik J., Some remarks to anisotropic Sobolev spaces II, Beiträge zur Analysis 15 (1981) 127-140. | MR | Zbl

[26] Tolksdorf P., On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations 8 (1983) 773-817. | MR | Zbl

[27] Troisi M., Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat. 18 (1969) 3-24. | MR | Zbl

[28] Ural'Tseva N.N., Urdaletova A.B., The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations, Vestnik Leningrad Univ. Math. 16 (1984) 263-270. | Zbl

[29] Ven'-Tuan L., On embedding theorems for spaces of functions with partial derivatives of various degrees of summability, Vestnik Leningrad Univ. 16 (1961) 23-37, (in Russian). | MR | Zbl

  • Mihăilescu, Mihai; Stancu-Dumitru, Denisa; Teca, Anisia On a Rayleigh-type quotient involving a variable exponent which depends on test functions, Archiv der Mathematik (2025) | DOI:10.1007/s00013-024-02097-4
  • Motreanu, Dumitru; Razani, Abdolrahman; Tornatore, Elisabetta An anisotropic Dirichlet system including unbounded coefficients, Discrete and Continuous Dynamical Systems - S, Volume 0 (2025) no. 0, p. 0 | DOI:10.3934/dcdss.2025015
  • di Blasio, Giuseppina; Feo, Filomena; Zecca, Gabriella Existence and uniqueness of solutions to some anisotropic elliptic equations with a singular convection term, Journal d'Analyse Mathématique (2025) | DOI:10.1007/s11854-025-0359-2
  • Díaz, J.I.; Ferone, A.; Mercaldo, A. Anisotropic partial symmetrization for some quasilinear equations in comparison with a p-Laplace realization on some of the coordinates, Journal of Mathematical Analysis and Applications, Volume 548 (2025) no. 1, p. 129370 | DOI:10.1016/j.jmaa.2025.129370
  • Hamidi, Abdellah; El Amrouss, Abdelrachid; Kissi, Fouad The Nehari manifold for anisotropic Kirchhoff problems involving variable singular exponent and critical terms, Rendiconti del Circolo Matematico di Palermo Series 2, Volume 74 (2025) no. 1 | DOI:10.1007/s12215-024-01153-w
  • Abdelrachid, El Amrouss; Fouad, Kissi; Ali, El Mahraoui Existence of solutions for a class of superlinear anisotropic Robin problems with variable exponent, Annals of the University of Craiova Mathematics and Computer Science Series, Volume 51 (2024) no. 2, p. 352 | DOI:10.52846/ami.v51i2.1828
  • Khelifi, Hichem Anisotropic degenerate elliptic problem with singular gradient lower order term, Bollettino dell'Unione Matematica Italiana, Volume 17 (2024) no. 1, p. 149 | DOI:10.1007/s40574-023-00395-3
  • Razani, A.; Figueiredo, Giovany M. Positive solutions for a semipositone anisotropic p-Laplacian problem, Boundary Value Problems, Volume 2024 (2024) no. 1 | DOI:10.1186/s13661-024-01841-7
  • Motreanu, Dumitru; Razani, Abdolrahman Competing anisotropic and Finsler (p,q)-Laplacian problems, Boundary Value Problems, Volume 2024 (2024) no. 1 | DOI:10.1186/s13661-024-01847-1
  • Razani, Abdolrahman Horizontal p-Kirchhoff equation on the Heisenberg group, Bulletin des Sciences Mathématiques, Volume 193 (2024), p. 103439 | DOI:10.1016/j.bulsci.2024.103439
  • Amoroso, Eleonora; Sciammetta, Angela; Winkert, Patrick Anisotropic (p,q)-Laplacian problems with superlinear nonlinearities, Communications in Analysis and Mechanics, Volume 16 (2024) no. 1, p. 1 | DOI:10.3934/cam.2024001
  • Avci, Mustafa On an anisotropic p()-Laplace equation with variable singular and sublinear nonlinearities, Communications in Analysis and Mechanics, Volume 16 (2024) no. 3, p. 554 | DOI:10.3934/cam.2024026
  • Razani, Abdolrahman; Tornatore, Elisabetta Solutions for nonhomogeneous degenerate quasilinear anisotropic problems, Constructive Mathematical Analysis, Volume 7 (2024) no. 3, p. 134 | DOI:10.33205/cma.1504337
  • Motreanu, Dumitru; Razani, Abdolrahman Optimizing solutions with competing anisotropic (p, q)-Laplacian in hemivariational inequalities, Constructive Mathematical Analysis, Volume 7 (2024) no. 4, p. 150 | DOI:10.33205/cma.1566388
  • Zhan, Huashui; Feng, Zhaosheng Nonnegative weak solutions of anisotropic parabolic equations, Discrete and Continuous Dynamical Systems - S, Volume 17 (2024) no. 4, p. 1648 | DOI:10.3934/dcdss.2024008
  • Motreanu, Dumitru; Tornatore, Elisabetta Dirichlet problems with anisotropic principal part involving unbounded coefficients, Electronic Journal of Differential Equations, Volume 2024 (2024) no. 01-??, p. 11 | DOI:10.58997/ejde.2024.11
  • Figueiredo, Giovany Malcher; Razani, Abdolrahman Infinitely many solutions for an anisotropic differential inclusion on unbounded domains, Electronic Journal of Qualitative Theory of Differential Equations (2024) no. 33, p. 1 | DOI:10.14232/ejqtde.2024.1.33
  • di Blasio, Giuseppina; Feo, Filomena; Zecca, Gabriella Regularity results for local solutions to some anisotropic elliptic equations, Israel Journal of Mathematics, Volume 261 (2024) no. 1, p. 1 | DOI:10.1007/s11856-023-2564-y
  • Bouzelmate, Arij; El Haji, Badr; Lamtarah, Adnan Nonlinear elliptic unilateral problems with measure data in the anisotropic Sobolev space, Nonautonomous Dynamical Systems, Volume 11 (2024) no. 1 | DOI:10.1515/msds-2024-0001
  • Allalou, Mouad; El Ouaarabi, Mohamed; Raji, Abderrahmane On a class of nonhomogeneous anisotropic elliptic problem with variable exponents, Rendiconti del Circolo Matematico di Palermo Series 2, Volume 73 (2024) no. 8, p. 3195 | DOI:10.1007/s12215-024-01100-9
  • Hajji, Youssef; Hjiaj, Hassane Existence and Uniqueness Solutions for Some Strongly Quasilinear Parabolic Problems in Anisotropic Sobolev Spaces, Results in Mathematics, Volume 79 (2024) no. 4 | DOI:10.1007/s00025-024-02191-7
  • El Amrouss, Abdelrachid; Abdellah, Hamidi; Fouad, Kissi Existence results for some anisotropic possible singular problems via the sub-supersolution method, Studia Universitatis Babes-Bolyai Matematica, Volume 69 (2024) no. 4, p. 849 | DOI:10.24193/subbmath.2024.4.10
  • Ahmed, Ahmed; Vall, Mohamed Saad Bouh Elemine Multiplicity of weak solutions for a class of non-homogeneous anisotropic elliptic systems, Studia Universitatis Babes-Bolyai Matematica, Volume 69 (2024) no. 4, p. 863 | DOI:10.24193/subbmath.2024.4.11
  • Ahmed, I.; Fiorenza, A.; Formica, M. R.; Gogatishvili, A.; El Hamidi, A.; Rakotoson, J. M. Quasilinear PDEs, Interpolation Spaces and Hölderian mappings, Analysis Mathematica, Volume 49 (2023) no. 4, p. 895 | DOI:10.1007/s10476-023-0245-z
  • Razani, A.; Figueiredo, Giovany M. Degenerated and competing anisotropic ( p,q )-Laplacians with weights, Applicable Analysis, Volume 102 (2023) no. 16, p. 4471 | DOI:10.1080/00036811.2022.2119137
  • Bonanno, G.; D’Aguì, G.; Sciammetta, A. Multiple solutions for a class of anisotropic p⃗-Laplacian problems, Boundary Value Problems, Volume 2023 (2023) no. 1 | DOI:10.1186/s13661-023-01774-7
  • Tavares, Leandro Solutions for a class of problems driven by an anisotropic (p,q)-Laplacian type operator, Communications in Analysis and Mechanics, Volume 15 (2023) no. 3, p. 533 | DOI:10.3934/cam.2023026
  • Soltani, Tahere; Razani, Abdolrahman Weak solutions for elliptic problems in weighted anisotropic Sobolev space, Filomat, Volume 37 (2023) no. 28, p. 9729 | DOI:10.2298/fil2328729s
  • Massar, Mohammed Elliptic anisotropic Kirchhoff-type problems with singular term, Journal of Elliptic and Parabolic Equations, Volume 9 (2023) no. 1, p. 419 | DOI:10.1007/s41808-023-00208-w
  • Benaichouche, Noureddine; Ayadi, Hocine; Mokhtari, Fares The anisotropic thermistor problem with degenerate thermal and electric conductivities, Journal of Elliptic and Parabolic Equations, Volume 9 (2023) no. 2, p. 901 | DOI:10.1007/s41808-023-00229-5
  • Brandolini, Barbara; Cîrstea, Florica C. Anisotropic elliptic equations with gradient-dependent lower order terms and L1 data, Mathematics in Engineering, Volume 5 (2023) no. 4, p. 1 | DOI:10.3934/mine.2023073
  • Brandolini, Barbara; Cîrstea, Florica C. Singular anisotropic elliptic equations with gradient-dependent lower order terms, Nonlinear Differential Equations and Applications NoDEA, Volume 30 (2023) no. 5 | DOI:10.1007/s00030-023-00864-w
  • Razani, Abdolrahman Entire weak solutions for an anisotropic equation in the Heisenberg group, Proceedings of the American Mathematical Society, Volume 151 (2023) no. 11, p. 4771 | DOI:10.1090/proc/16488
  • Leggat, Ahmed Réda; Miri, Sofiane El-Hadi An existence result for a singular-regular anisotropic system, Rendiconti del Circolo Matematico di Palermo Series 2, Volume 72 (2023) no. 2, p. 977 | DOI:10.1007/s12215-022-00718-x
  • Corrêa, Francisco Julio S. A.; dos Santos, Gelson C. G.; Tavares, Leandro S. Existence and multiplicity of solutions for a singular anisotropic problem with a sign-changing term, Revista Matemática Complutense, Volume 36 (2023) no. 3, p. 779 | DOI:10.1007/s13163-022-00446-x
  • MIRI, Sofiane El‐Hadi Long time behaviour for solutions to a particular wave equation, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 103 (2023) no. 10 | DOI:10.1002/zamm.202200618
  • Razani, A. Nonstandard competing anisotropic (p,q)-Laplacians with convolution, Boundary Value Problems, Volume 2022 (2022) no. 1 | DOI:10.1186/s13661-022-01669-z
  • dos Santos, Gelson C. G.; Silva, Julio R. S.; Arruda, Suellen Cristina Q.; Tavares, Leandro S. Existence and multiplicity results for critical anisotropic Kirchhoff-type problems with nonlocal nonlinearities, Complex Variables and Elliptic Equations, Volume 67 (2022) no. 4, p. 822 | DOI:10.1080/17476933.2020.1843448
  • Benaichouche, Noureddine; Ayadi, Hocine; Mokhtari, Fares; Hakem, Ali Existence and regularity results for nonlinear anisotropic unilateral elliptic problems with degenerate coercivity, Journal of Elliptic and Parabolic Equations, Volume 8 (2022) no. 1, p. 171 | DOI:10.1007/s41808-022-00148-x
  • Razani, Abdolrahman; Figueiredo, Giovany M. Existence of infinitely many solutions for an anisotropic equation using genus theory, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 12, p. 7591 | DOI:10.1002/mma.8264
  • Guefaifia, Rafik; dos Santos, Gelson Concei¸cao G.; Bouali, Tahar; Jan, Rashid; Boulaaras, Salah; Alharbi, Asma Sub-Super Solutions Method Combined with Schauder’s Fixed Point for Existence of Positive Weak Solutions for Anisotropic Non-Local Elliptic Systems, Mathematics, Volume 10 (2022) no. 23, p. 4479 | DOI:10.3390/math10234479
  • Díaz-Martínez, Victor; Vélez-Santiago, Alejandro Generalized anisotropic elliptic Wentzell problems with nonstandard growth conditions, Nonlinear Analysis: Real World Applications, Volume 68 (2022), p. 103689 | DOI:10.1016/j.nonrwa.2022.103689
  • Antontsev, S. N.; de Oliveira, H. B.; Khompysh, Kh. Kelvin-Voigt equations for incompressible and nonhomogeneous fluids with anisotropic viscosity, relaxation and damping, Nonlinear Differential Equations and Applications NoDEA, Volume 29 (2022) no. 5 | DOI:10.1007/s00030-022-00794-z
  • Aberqi, Ahmed; Aharrouch, Benali; Bennouna, Jaouad On Some p(x) Anisotropic Elliptic Equations in Unbounded Domain, Acta Mathematica Vietnamica, Volume 46 (2021) no. 4, p. 701 | DOI:10.1007/s40306-021-00434-1
  • Mihăilescu, Mihai; Stancu-Dumitru, Denisa Torsional creep problems involving Grushin-type operators, Applied Mathematics Letters, Volume 121 (2021), p. 107423 | DOI:10.1016/j.aml.2021.107423
  • Ciani, Simone; Figueiredo, Giovany M.; Suárez, Antonio Existence of positive eigenfunctions to an anisotropic elliptic operator via the sub-supersolution method, Archiv der Mathematik, Volume 116 (2021) no. 1, p. 85 | DOI:10.1007/s00013-020-01518-4
  • Antontsev, S.; de Oliveira, H.B.; Khompysh, Kh. Kelvin–Voigt equations with anisotropic diffusion, relaxation and damping: Blow-up and large time behavior, Asymptotic Analysis, Volume 121 (2021) no. 2, p. 125 | DOI:10.3233/asy-201597
  • Boukhrij, Mohamed; Aharrouch, Benali; Bennouna, Jaouad; Aberqi, Ahmed Existence results for some nonlinear degenerate problems in the anisotropic spaces, Boletim da Sociedade Paranaense de Matemática, Volume 39 (2021) no. 6, p. 53 | DOI:10.5269/bspm.41366
  • dos Santos, Gelson C. G.; Tavares, Leandro S. Existence results for an anisotropic nonlocal problem involving critical and discontinuous nonlinearities, Complex Variables and Elliptic Equations, Volume 66 (2021) no. 5, p. 731 | DOI:10.1080/17476933.2020.1743982
  • Bensid, Sabri; Mamchaoui, Mohamed Anisotropic nonlocal problem with discontinuous nonlinearities, Journal of Elliptic and Parabolic Equations, Volume 7 (2021) no. 2, p. 945 | DOI:10.1007/s41808-021-00130-z
  • Azroul, Elhoussine; Bouziani, Mohammed; Barbara, Abdelkrim Existence of entropy solutions for anisotropic quasilinear degenerated elliptic problems with Hardy potential, SeMA Journal, Volume 78 (2021) no. 4, p. 475 | DOI:10.1007/s40324-021-00247-0
  • Ourraoui, Anass; Ragusa, Maria Alessandra An Existence Result for a Class of p(x)—Anisotropic Type Equations, Symmetry, Volume 13 (2021) no. 4, p. 633 | DOI:10.3390/sym13040633
  • Boukarabila, Youssouf Oussama; Miri, Sofiane El-Hadi Anisotropic system with singular and regular nonlinearities, Complex Variables and Elliptic Equations, Volume 65 (2020) no. 4, p. 621 | DOI:10.1080/17476933.2019.1606802
  • Ayadi, Hocine; Mokhtari, Fares Entropy solutions for nonlinear anisotropic elliptic equations with variable exponents and degenerate coercivity, Complex Variables and Elliptic Equations, Volume 65 (2020) no. 5, p. 717 | DOI:10.1080/17476933.2019.1615899
  • Zhan, Huashui; Feng, Zhaosheng Stability of anisotropic parabolic equations without boundary conditions, Electronic Journal of Differential Equations, Volume 2020 (2020) no. 01-132, p. 74 | DOI:10.58997/ejde.2020.74
  • Qian, Chenyin; Yuan, Daorui The asymptotic behavior for anisotropic parabolic p‐Laplacian equations, Mathematische Nachrichten, Volume 293 (2020) no. 10, p. 1968 | DOI:10.1002/mana.201900220
  • Ahmed, Ahmed; Vall, Mohamed Saad Bouh Elemine Three weak solutions for a Neumann elliptic equations involving the p→(x) p⃗( x ) -Laplacian operator, Nonautonomous Dynamical Systems, Volume 7 (2020) no. 1, p. 224 | DOI:10.1515/msds-2020-0118
  • Le, Phuong; Le, Kim Anh T; Dinh, Phuoc Vinh A nonexistence result for anisotropic problems *, Nonlinearity, Volume 33 (2020) no. 12, p. 7040 | DOI:10.1088/1361-6544/abaca1
  • Salmani, Abdelhafid; Akdim, Youssef; Redwane, Hicham Entropy solutions of anisotropic elliptic nonlinear obstacle problem with measure data, Ricerche di Matematica, Volume 69 (2020) no. 1, p. 121 | DOI:10.1007/s11587-019-00452-0
  • Akdim, Youssef; Salmani, Abdelhafid, Volume 2074 (2019), p. 020008 | DOI:10.1063/1.5090625
  • Taarabti, Said; El Allali, Zakaria; Haddouch, Khalil Ben, Volume 2074 (2019), p. 020024 | DOI:10.1063/1.5090641
  • de Oliveira, H. B. Generalized Navier–Stokes equations with nonlinear anisotropic viscosity, Analysis and Applications, Volume 17 (2019) no. 06, p. 977 | DOI:10.1142/s021953051950009x
  • da Silva, E. D.; Carvalho, M. L. M.; Gonçalves, J. V.; Goulart, C. Critical quasilinear elliptic problems using concave–convex nonlinearities, Annali di Matematica Pura ed Applicata (1923 -), Volume 198 (2019) no. 3, p. 693 | DOI:10.1007/s10231-018-0794-0
  • Figueiredo, Giovany; Silva, Julio Solutions to an anisotropic system via sub-supersolution method and Mountain Pass Theorem, Electronic Journal of Qualitative Theory of Differential Equations (2019) no. 46, p. 1 | DOI:10.14232/ejqtde.2019.1.46
  • Lourêdo, Aldo Trajano; Milla Miranda, Manuel; Clark, Marcondes Rodrigues Variable exponent perturbation of a parabolic equation withp(x)-Laplacian, Electronic Journal of Qualitative Theory of Differential Equations (2019) no. 60, p. 1 | DOI:10.14232/ejqtde.2019.1.60
  • Boureanu, Maria-Magdalena; Vélez-Santiago, Alejandro Fine regularity for elliptic and parabolic anisotropic Robin problems with variable exponents, Journal of Differential Equations, Volume 266 (2019) no. 12, p. 8164 | DOI:10.1016/j.jde.2018.12.026
  • Antontsev, S.N.; de Oliveira, H.B.; Khompysh, Kh. Kelvin–Voigt equations perturbed by anisotropic relaxation, diffusion and damping, Journal of Mathematical Analysis and Applications, Volume 473 (2019) no. 2, p. 1122 | DOI:10.1016/j.jmaa.2019.01.011
  • dos Santos, Gelson C.G.; Figueiredo, Giovany M.; Tavares, Leandro S. Existence Results for Some Anisotropic Singular Problems via Sub-supersolutions, Milan Journal of Mathematics, Volume 87 (2019) no. 2, p. 249 | DOI:10.1007/s00032-019-00300-8
  • Alberico, A.; di Blasio, G.; Feo, F. Estimates for fully anisotropic elliptic equations with a zero order term, Nonlinear Analysis, Volume 181 (2019), p. 249 | DOI:10.1016/j.na.2018.11.013
  • Figueiredo, Giovany M.; Silva, Julio R.S. A critical anisotropic problem with discontinuous nonlinearities, Nonlinear Analysis: Real World Applications, Volume 47 (2019), p. 364 | DOI:10.1016/j.nonrwa.2018.11.008
  • Khademloo, S.; Afrouzi, G. A.; Ghara, T. Norouzi Infinitely many solutions for anisotropic variable exponent problems, Complex Variables and Elliptic Equations, Volume 63 (2018) no. 9, p. 1353 | DOI:10.1080/17476933.2017.1370462
  • Galewski, Marek; Heidarkhani, Shapour; Salari, Amjad Multiplicity results for discrete anisotropic equations, Discrete Continuous Dynamical Systems - B, Volume 23 (2018) no. 1, p. 203 | DOI:10.3934/dcdsb.2018014
  • Zhan, Huashui A New Method to Deal with the Stability of the Weak Solutions for a Nonlinear Parabolic Equation, Journal of Function Spaces, Volume 2018 (2018), p. 1 | DOI:10.1155/2018/3070738
  • Gao, Hongya; Leonetti, Francesco; Wang, Lianhong Remarks on Stampacchia Lemma, Journal of Mathematical Analysis and Applications, Volume 458 (2018) no. 1, p. 112 | DOI:10.1016/j.jmaa.2017.08.056
  • Akdim, Youssef; Allalou, Chakir; Salmani, Abdelhafid Existence of Solutions for Some Nonlinear Elliptic Anisotropic Unilateral Problems with Lower Order Terms, Moroccan Journal of Pure and Applied Analysis, Volume 4 (2018) no. 2, p. 171 | DOI:10.1515/mjpaa-2018-0014
  • Chlebicka, Iwona A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces, Nonlinear Analysis, Volume 175 (2018), p. 1 | DOI:10.1016/j.na.2018.05.003
  • Akdim, Youssef; moumni, Mostafa El; Salmani, Abdelhafid Existence Results for Nonlinear Anisotropic Elliptic Equation, Advances in Science, Technology and Engineering Systems Journal, Volume 2 (2017) no. 5, p. 160 | DOI:10.25046/aj020523
  • Zhan, Huashui The stability of the anisotropic parabolic equation with the variable exponent, Boundary Value Problems, Volume 2017 (2017) no. 1 | DOI:10.1186/s13661-017-0868-8
  • Zhan, Huashui The well-posedness of an anisotropic parabolic equation based on the partial boundary value condition, Boundary Value Problems, Volume 2017 (2017) no. 1 | DOI:10.1186/s13661-017-0899-1
  • Fărcăşeanu, Maria An eigenvalue problem involving an anisotropic differential operator, Complex Variables and Elliptic Equations, Volume 62 (2017) no. 3, p. 297 | DOI:10.1080/17476933.2016.1218856
  • Baroni, Paolo; Di Castro, Agnese; Palatucci, Giampiero Intrinsic geometry and De Giorgi classes for certain anisotropic problems, Discrete Continuous Dynamical Systems - S, Volume 10 (2017) no. 4, p. 647 | DOI:10.3934/dcdss.2017032
  • Tersenov, Alkis S.; Tersenov, Aris S. Existence of Lipschitz continuous solutions to the Cauchy–Dirichlet problem for anisotropic parabolic equations, Journal of Functional Analysis, Volume 272 (2017) no. 10, p. 3965 | DOI:10.1016/j.jfa.2017.02.014
  • Feng, Tingfu; Cui, Xuewei Anisotropic Picone identities and anisotropic Hardy inequalities, Journal of Inequalities and Applications, Volume 2017 (2017) no. 1 | DOI:10.1186/s13660-017-1292-4
  • Alberico, A.; di Blasio, G.; Feo, F. A Symmetrization Result for a Class of Anisotropic Elliptic Problems, Journal of Mathematical Sciences, Volume 224 (2017) no. 5, p. 607 | DOI:10.1007/s10958-017-3439-8
  • Alberico, A.; Blasio, G. di; Feo, F. A priori estimates for solutions to anisotropic elliptic problems via symmetrization, Mathematische Nachrichten, Volume 290 (2017) no. 7, p. 986 | DOI:10.1002/mana.201500282
  • Bonheure, Denis; Rossi, Julio D. The behavior of solutions to an elliptic equation involving a p-Laplacian and a q-Laplacian for large p, Nonlinear Analysis: Theory, Methods Applications, Volume 150 (2017), p. 104 | DOI:10.1016/j.na.2016.11.001
  • Miri, Sofiane El-Hadi On an anisotropic problem with singular nonlinearity having variable exponent, Ricerche di Matematica, Volume 66 (2017) no. 2, p. 415 | DOI:10.1007/s11587-016-0309-5
  • Salari, Amjad; Caristi, Giuseppe; Barilla, David; Puglisi, Alfio A Variational Approach to Perturbed Discrete Anisotropic Equations, Abstract and Applied Analysis, Volume 2016 (2016), p. 1 | DOI:10.1155/2016/5676138
  • Leggat, Ahmed Réda; Miri, Sofiane El-Hadi Anisotropic problem with singular nonlinearity, Complex Variables and Elliptic Equations, Volume 61 (2016) no. 4, p. 496 | DOI:10.1080/17476933.2015.1102900
  • Gratwick, R.; Sychev, M. A.; Tersenov, A. S. Regularity theory for one-dimensional variational problems with singular ellipticity, Doklady Mathematics, Volume 94 (2016) no. 2, p. 490 | DOI:10.1134/s1064562416050021
  • Alberico, Angela; di Blasio, Giuseppina; Feo, Filomena Estimates for Solutions to Anisotropic Elliptic Equations with Zero Order Term, Geometric Properties for Parabolic and Elliptic PDE's, Volume 176 (2016), p. 1 | DOI:10.1007/978-3-319-41538-3_1
  • Afrouzi, G. A.; Mirzapour, M.; Rădulescu, Vicenţiu D. Qualitative Analysis of Solutions for a Class of Anisotropic Elliptic Equations with Variable Exponent, Proceedings of the Edinburgh Mathematical Society, Volume 59 (2016) no. 3, p. 541 | DOI:10.1017/s0013091515000346
  • Antontsev, S. N.; de Oliveira, H. B. Evolution problems of Navier–Stokes type with anisotropic diffusion, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, Volume 110 (2016) no. 2, p. 729 | DOI:10.1007/s13398-015-0262-2
  • Vétois, Jérôme Decay estimates and a vanishing phenomenon for the solutions of critical anisotropic equations, Advances in Mathematics, Volume 284 (2015), p. 122 | DOI:10.1016/j.aim.2015.04.029
  • Cîrstea, Florica C.; Vétois, Jérôme Fundamental Solutions for Anisotropic Elliptic Equations: Existence and A Priori Estimates, Communications in Partial Differential Equations, Volume 40 (2015) no. 4, p. 727 | DOI:10.1080/03605302.2014.969374
  • Oliveira, Hermenegildo Borges de, Dynamical Systems and Differential Equations, AIMS Proceedings 2015 Proceedings of the 10th AIMS International Conference (Madrid, Spain) (2015), p. 349 | DOI:10.3934/proc.2015.0349
  • Ourraoui, Anass Onp→(x)-Anisotropic Problems with Neumann Boundary Conditions, International Journal of Differential Equations, Volume 2015 (2015), p. 1 | DOI:10.1155/2015/238261
  • Nonlinear Problems in Orlicz-Sobolev Spaces, Partial Differential Equations with Variable Exponents (2015), p. 139 | DOI:10.1201/b18601-13
  • Afrouzi, Ghasem A.; Mirzapour, M.; Rădulescu, Vicenţiu D. The variational analysis of a nonlinear anisotropic problem with no-flux boundary condition, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, Volume 109 (2015) no. 2, p. 581 | DOI:10.1007/s13398-014-0202-6
  • Di Nardo, R.; Feo, F. Existence and uniqueness for nonlinear anisotropic elliptic equations, Archiv der Mathematik, Volume 102 (2014) no. 2, p. 141 | DOI:10.1007/s00013-014-0611-y
  • Bensedik, Ahmed On Existence Results for an Anisotropic Elliptic Equation of Kirchhoff-Type by a Monotonicity Method, Funkcialaj Ekvacioj, Volume 57 (2014) no. 3, p. 489 | DOI:10.1619/fesi.57.489
  • Chung, Nguyen Thanh; Toan, Hoang Quoc On a class of anisotropic elliptic equations without Ambrosetti–Rabinowitz type conditions, Nonlinear Analysis: Real World Applications, Volume 16 (2014), p. 132 | DOI:10.1016/j.nonrwa.2013.09.012
  • Antontsev, S.N.; Shmarev, S.I. Doubly degenerate parabolic equations with variable nonlinearity II: Blow-up and extinction in a finite time, Nonlinear Analysis: Theory, Methods Applications, Volume 95 (2014), p. 483 | DOI:10.1016/j.na.2013.09.027
  • Di Castro, Agnese Local Hölder continuity of weak solutions for an anisotropic elliptic equation, Nonlinear Differential Equations and Applications NoDEA, Volume 20 (2013) no. 3, p. 463 | DOI:10.1007/s00030-012-0160-7
  • Riey, Giuseppe; Sciunzi, Berardino One dimensional symmetry of solutions to some anisotropic quasilinear elliptic equations in the plane, Communications on Pure Applied Analysis, Volume 11 (2012) no. 3, p. 1157 | DOI:10.3934/cpaa.2012.11.1157
  • Di Castro, Agnese; Pérez-Llanos, Mayte; Miguel Urbano, José Limits of anisotropic and degenerate elliptic problems, Communications on Pure Applied Analysis, Volume 11 (2012) no. 3, p. 1217 | DOI:10.3934/cpaa.2012.11.1217
  • Chrayteh, Houssam Qualitative Properties of Eigenvectors Related to Multivalued Operators and some Existence Results, Journal of Optimization Theory and Applications, Volume 155 (2012) no. 2, p. 507 | DOI:10.1007/s10957-012-0064-z
  • Boureanu, Maria-Magdalena; Rădulescu, Vicenţiu D. Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlinear Analysis: Theory, Methods Applications, Volume 75 (2012) no. 12, p. 4471 | DOI:10.1016/j.na.2011.09.033
  • Tersenov, Ar. S. New a priori estimates of solutions to anisotropic elliptic equations, Siberian Mathematical Journal, Volume 53 (2012) no. 3, p. 539 | DOI:10.1134/s0037446612020346
  • Stancu-Dumitru, Denisa TWO NONTRIVIAL SOLUTIONS FOR A CLASS OF ANISOTROPIC VARIABLE EXPONENT PROBLEMS, Taiwanese Journal of Mathematics, Volume 16 (2012) no. 4 | DOI:10.11650/twjm/1500406732
  • PEREZ-LLANOS, MAYTE; ROSS, JULIO D. AN ANISOTROPIC INFINITY LAPLACIAN OBTAINED AS THE LIMIT OF THE ANISOTROPIC (p, q)-LAPLACIAN, Communications in Contemporary Mathematics, Volume 13 (2011) no. 06, p. 1057 | DOI:10.1142/s0219199711004543
  • Fan, Xianling Anisotropic variable exponent Sobolev spaces and -Laplacian equations, Complex Variables and Elliptic Equations, Volume 56 (2011) no. 7-9, p. 623 | DOI:10.1080/17476931003728412
  • Boureanu, Maria-Magdalena; Pucci, Patrizia; Rădulescu, Vicenţiu D. Multiplicity of solutions for a class of anisotropic elliptic equations with variable exponent, Complex Variables and Elliptic Equations, Volume 56 (2011) no. 7-9, p. 755 | DOI:10.1080/17476931003786709
  • Di Castro, Agnese Anisotropic elliptic problems with natural growth terms, Manuscripta Mathematica, Volume 135 (2011) no. 3-4, p. 521 | DOI:10.1007/s00229-011-0431-3
  • Mokhtari, Fares Anisotropic parabolic problems with Orlicz data, Mathematical Methods in the Applied Sciences, Volume 34 (2011) no. 17, p. 2095 | DOI:10.1002/mma.1508
  • Fan, Xianling The number of solutions for a class of nonlocal nonhomogeneous gradient operator equations, Nonlinear Analysis: Theory, Methods Applications, Volume 74 (2011) no. 11, p. 3644 | DOI:10.1016/j.na.2011.02.045
  • Benmouloud, Samira; Echarghaoui, Rachid; Mohammed Sbaï, Si. Existence of entire positive solutions for a critical system of nonlinear elliptic equations, Nonlinear Analysis: Theory, Methods Applications, Volume 74 (2011) no. 17, p. 6397 | DOI:10.1016/j.na.2011.06.021
  • Vétois, Jérôme The blow-up of critical anisotropic equations with critical directions, Nonlinear Differential Equations and Applications NoDEA, Volume 18 (2011) no. 2, p. 173 | DOI:10.1007/s00030-010-0090-1
  • Boureanu, Maria-Magdalena INFINITELY MANY SOLUTIONS FOR A CLASS OF DEGENERATE ANISOTROPIC ELLIPTIC PROBLEMS WITH VARIABLE EXPONENT, Taiwanese Journal of Mathematics, Volume 15 (2011) no. 5 | DOI:10.11650/twjm/1500406435
  • García-Melián, Jorge; Rossi, Julio D.; de Lis, José C. Sabina Large solutions to an anisotropic quasilinear elliptic problem, Annali di Matematica Pura ed Applicata, Volume 189 (2010) no. 4, p. 689 | DOI:10.1007/s10231-010-0132-7
  • Mihăilescu, Mihai; Moroşanu, Gheorghe Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions, Applicable Analysis, Volume 89 (2010) no. 2, p. 257 | DOI:10.1080/00036810802713826
  • VÉTOIS, JÉRÔME ASYMPTOTIC STABLILITY, CONVEXITY, AND LIPSCHITZ REGULARITY OF DOMAINS IN THE ANISOTROPIC REGIME, Communications in Contemporary Mathematics, Volume 12 (2010) no. 01, p. 35 | DOI:10.1142/s0219199710003713
  • Alberico, Angela Boundedness of Solutions to Anisotropic Variational Problems, Communications in Partial Differential Equations, Volume 36 (2010) no. 3, p. 470 | DOI:10.1080/03605302.2010.509768
  • MIHĂILESCU, MIHAI; MOROŞANU, GHEORGHE ON AN EIGENVALUE PROBLEM FOR AN ANISOTROPIC ELLIPTIC EQUATION INVOLVING VARIABLE EXPONENTS, Glasgow Mathematical Journal, Volume 52 (2010) no. 3, p. 517 | DOI:10.1017/s001708951000039x
  • Starovoitov, Victor N.; Tersenov, Alkis S. Singular and degenerate anisotropic parabolic equations with a nonlinear source, Nonlinear Analysis: Theory, Methods Applications, Volume 72 (2010) no. 6, p. 3009 | DOI:10.1016/j.na.2009.11.042
  • Mihăilescu, Mihai; Moroşanu, Gheorghe; Rădulescu, Vicenţiu Eigenvalue problems for anisotropic elliptic equations: An Orlicz–Sobolev space setting, Nonlinear Analysis: Theory, Methods Applications, Volume 73 (2010) no. 10, p. 3239 | DOI:10.1016/j.na.2010.07.004
  • Fan, Xianling On nonlocal -Laplacian equations, Nonlinear Analysis: Theory, Methods Applications, Volume 73 (2010) no. 10, p. 3364 | DOI:10.1016/j.na.2010.07.018
  • Mercaldo, A.; Rossi, J.D.; Segura de León, S.; Trombetti, C. Anisotropic -Laplacian equations when goes to, Nonlinear Analysis: Theory, Methods Applications, Volume 73 (2010) no. 11, p. 3546 | DOI:10.1016/j.na.2010.07.030
  • Fan, Xianling Local boundedness of quasi-minimizers of integral functionals with variable exponent anisotropic growth and applications, Nonlinear Differential Equations and Applications NoDEA, Volume 17 (2010) no. 5, p. 619 | DOI:10.1007/s00030-010-0072-3
  • Hamidi, Abdallah El; Vétois, Jérôme Sharp Sobolev Asymptotics for Critical Anisotropic Equations, Archive for Rational Mechanics and Analysis, Volume 192 (2009) no. 1, p. 1 | DOI:10.1007/s00205-008-0122-8
  • Mihăilescu, Mihai; Moroşanu, Gheorghe; Rădulescu, Vicenţiu Eigenvalue problems in anisotropic Orlicz–Sobolev spaces, Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, p. 521 | DOI:10.1016/j.crma.2009.02.023
  • Mihăilescu, Mihai; Rădulescu, Vicenţiu; Tersian, Stepan Eigenvalue problems for anisotropic discrete boundary value problems, Journal of Difference Equations and Applications, Volume 15 (2009) no. 6, p. 557 | DOI:10.1080/10236190802214977
  • Di Castro, Agnese; Montefusco, Eugenio Nonlinear eigenvalues for anisotropic quasilinear degenerate elliptic equations, Nonlinear Analysis: Theory, Methods Applications, Volume 70 (2009) no. 11, p. 4093 | DOI:10.1016/j.na.2008.06.001
  • D’Ambrosio, Lorenzo Liouville theorems for anisotropic quasilinear inequalities, Nonlinear Analysis: Theory, Methods Applications, Volume 70 (2009) no. 8, p. 2855 | DOI:10.1016/j.na.2008.12.028
  • Vétois, Jérôme A priori estimates for solutions of anisotropic elliptic equations, Nonlinear Analysis: Theory, Methods Applications, Volume 71 (2009) no. 9, p. 3881 | DOI:10.1016/j.na.2009.02.076
  • Mihăilescu, Mihai; Pucci, Patrizia; Rădulescu, Vicenţiu Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, Journal of Mathematical Analysis and Applications, Volume 340 (2008) no. 1, p. 687 | DOI:10.1016/j.jmaa.2007.09.015
  • Alberico, Angela; Cianchi, Andrea Comparison estimates in anisotropic variational problems, manuscripta mathematica, Volume 126 (2008) no. 4 | DOI:10.1007/s00229-008-0183-x
  • El Hamidi, A.; Rakotoson, J.M. Extremal functions for the anisotropic Sobolev inequalities, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 24 (2007) no. 5, p. 741 | DOI:10.1016/j.anihpc.2006.06.003
  • Cianchi, Andrea Symmetrization in Anisotropic Elliptic Problems, Communications in Partial Differential Equations, Volume 32 (2007) no. 5, p. 693 | DOI:10.1080/03605300600634973
  • Mihăilescu, Mihai; Pucci, Patrizia; Rădulescu, Vicenţiu Nonhomogeneous boundary value problems in anisotropic Sobolev spaces, Comptes Rendus. Mathématique, Volume 345 (2007) no. 10, p. 561 | DOI:10.1016/j.crma.2007.10.012
  • Tersenov, Alkis S.; Tersenov, Aris S. The problem of Dirichlet for anisotropic quasilinear degenerate elliptic equations, Journal of Differential Equations, Volume 235 (2007) no. 2, p. 376 | DOI:10.1016/j.jde.2007.01.009
  • Antontsev, Stanislav; Shmarev, Sergey Chapter 1 Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, Volume 3 (2006), p. 1 | DOI:10.1016/s1874-5733(06)80005-7

Cité par 142 documents. Sources : Crossref