@article{AIHPC_2000__17_2_147_0, author = {Cianchi, Andrea}, title = {Local boundedness of minimizers of anisotropic functionals}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {147--168}, publisher = {Gauthier-Villars}, volume = {17}, number = {2}, year = {2000}, mrnumber = {1753091}, zbl = {0984.49019}, language = {en}, url = {http://www.numdam.org/item/AIHPC_2000__17_2_147_0/} }
TY - JOUR AU - Cianchi, Andrea TI - Local boundedness of minimizers of anisotropic functionals JO - Annales de l'I.H.P. Analyse non linéaire PY - 2000 SP - 147 EP - 168 VL - 17 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_2000__17_2_147_0/ LA - en ID - AIHPC_2000__17_2_147_0 ER -
Cianchi, Andrea. Local boundedness of minimizers of anisotropic functionals. Annales de l'I.H.P. Analyse non linéaire, Tome 17 (2000) no. 2, pp. 147-168. http://www.numdam.org/item/AIHPC_2000__17_2_147_0/
[2] W2,2 regularity for weak solutions of elliptic systems with nonstandard growth, J. Math. Anal. Appl. 176 (1993) 224-234. | MR | Zbl
, ,[3] Boundedness of solutions to variational problems under general growth conditions, Comm. Partial Differential Equations 22 (1997) 1629-1646. | MR | Zbl
,[4] A fully anisotropic Sobolev inequality, Pacific Journal of Math., to appear. | Zbl
[5] Sulla differenziabilità e 1' analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino (Classe di Sci. Mat. Fis. Nat.) 3 (3) (1957) 25-43. | MR | Zbl
,[6] Regularity for local minima of functionals with non standard growth conditions, Rend. Mat. 18 (7) (1998) 305-326. | MR | Zbl
, , ,[7] Some remarks on the regularity of minima of anisotropic integrals, Comm. Partial Differential Equations 18 (1993) 153-167. | MR | Zbl
, ,[8] Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Math. Studies, Vol. 105, Princeton Univ. Press, Princeton, 1983. | MR | Zbl
,[9] Growth conditions and regularity, a counterexample, Manuscr. Math. 59 (1987) 245-248. | MR | Zbl
,[10] Quasi-minima, Ann. Inst. H. Poincaré (Analyse non Linéaire) 1 (1984) 79-107. | Numdam | Zbl
, ,[11] Direct Methods in the Calculus of Variations, Unione Matematica Italiana, Bologna, 1994. | MR | Zbl
,[12] Some remarks on the minimizers of variational integrals with non standard growth conditions, Boll. Un. Mat. Ital. 6-A (1992) 91-101. | MR | Zbl
,[13] On the boundedness of generalized solutions of elliptic differential equations with nonpower nonlinearities, Math. USSR Sbornik 66 (1990) 83-106. | MR | Zbl
,[14] Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. | MR | Zbl
, ,[15] Weak differentiability for solutions to nonlinear elliptic systems with ( p, q) growth conditions, Ann. Mat. Pura Appl. 162 (1992) 349-366. | MR | Zbl
,[16] The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991) 311-361. | MR | Zbl
,[17] Un exemple de solution discontinue d' un probléme variationnel dans le cas scalaire, Preprint, 1987.
,[ 18] Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Rat. Mech. Anal. 105 (1989) 267-284. | MR | Zbl
,[ 19] Regularity and existence of solutions of elliptic equations with p, q- growth conditions, J. Differential Equations 90 (1991) 1-30. | MR | Zbl
,[20] Regularity for elliptic equations with general growth conditions, J. Differential Equations 105 (1993) 296-333. | MR | Zbl
,[21] Local boundedness of minimizers of integrals of the calculus of variations, Ann. Mat. Pura Appl. 167 (1994) 323-339. | MR | Zbl
, ,[22] Harnack inequality for minimizers of integral functionals with general growth conditions, Nonlinear Differential Equations Appl. 3 (1996) 232- 244. | MR | Zbl
, ,[23] Hölder continuity of minimizers of functionals with nonstandard growth conditions, Ric. Mat. 40 (1991) 259-273. | MR | Zbl
, ,[24] Global boundedness of solutions of anisotropic variational problems, Boll. Un. Mat. Ital 5-A (1991) 345-352. | MR | Zbl
,[25] Boundedness of minimizers, Hokkaido Math. J. 19 (1990) 259-279. | MR | Zbl
,