@article{AIHPC_2003__20_6_1043_0, author = {Schn\"urer, Oliver C and Smoczyk, Knut}, title = {Neumann and second boundary value problems for hessian and {Gau{\ss}} curvature flows}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1043--1073}, publisher = {Elsevier}, volume = {20}, number = {6}, year = {2003}, doi = {10.1016/S0294-1449(03)00021-0}, mrnumber = {2008688}, zbl = {1032.53058}, language = {en}, url = {https://www.numdam.org/articles/10.1016/S0294-1449(03)00021-0/} }
TY - JOUR AU - Schnürer, Oliver C AU - Smoczyk, Knut TI - Neumann and second boundary value problems for hessian and Gauß curvature flows JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 1043 EP - 1073 VL - 20 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S0294-1449(03)00021-0/ DO - 10.1016/S0294-1449(03)00021-0 LA - en ID - AIHPC_2003__20_6_1043_0 ER -
%0 Journal Article %A Schnürer, Oliver C %A Smoczyk, Knut %T Neumann and second boundary value problems for hessian and Gauß curvature flows %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 1043-1073 %V 20 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/S0294-1449(03)00021-0/ %R 10.1016/S0294-1449(03)00021-0 %G en %F AIHPC_2003__20_6_1043_0
Schnürer, Oliver C; Smoczyk, Knut. Neumann and second boundary value problems for hessian and Gauß curvature flows. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 6, pp. 1043-1073. doi : 10.1016/S0294-1449(03)00021-0. https://www.numdam.org/articles/10.1016/S0294-1449(03)00021-0/
[1] Gauß curvature flow, The shape of the rolling stones, Invent. Math. 138 (1999) 151-161. | MR | Zbl
,[2] Nonlinear second-order elliptic equations. V. The Dirichlet problem for Weingarten hypersurfaces, Comm. Pure Appl. Math. 41 (1988) 47-70. | MR | Zbl
, , ,[3] A logarithmic Gauß curvature flow and the Minkowski problem, Ann. Inst. H. Poincaré Analyse Non Linéaire 17 (6) (2000) 733-751. | Numdam | MR | Zbl
, ,[4] Deforming convex hypersurfaces by the nth root of the Gaussian curvature, J. Differential Geom. 22 (1) (1985) 117-138. | MR | Zbl
,[5] The free boundary in the Gauß curvature flow with flat sides, J. Reine Angew. Math. 510 (1999) 187-227. | MR | Zbl
, ,[6] Shapes of worn stones, Mathematica 21 (1974) 1-11. | MR | Zbl
,[7] C. Gerhardt, Existenz für kleine Zeiten bei Neumann Randbedingungen, Lecture Notes.
[8] Hypersurfaces of prescribed curvature in Lorentzian manifolds, Indiana Univ. Math. J. 49 (2000) 1125-1153. | MR | Zbl
,[9] Hypersurfaces of prescribed Weingarten curvature, Math. Z. 224 (1997) 167-194. | MR | Zbl
,[10] Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983, xiii+513 pp. | MR | Zbl
, ,[11] Estimation of the second derivatives on the boundary for surfaces evolving under the action of their principal curvatures, Algebra i Analiz 9 (1997) 30-50, (in Russian). Translation in , St. Petersburg Math. J. 9 (1998) 199-217. | MR | Zbl
, ,[12] Linear and Quasilinear Equations of Parabolic Type, (in Russian). Translated from the Russian by S. Smith , Transl. Math. Monographs, 23, American Mathematical Society, Providence, RI, 1967, xi+648 pp. | MR | Zbl
, , ,[13] Second Order Parabolic Differential Equations, World Scientific, River Edge, NJ, 1996, xii+439 pp. | MR | Zbl
,[14] The Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math. 39 (1986) 539-563. | MR | Zbl
, , ,[15] The Dirichlet problem for Weingarten hypersurfaces in Lorentz manifolds, Math. Z. 242 (2002) 159-181. | MR | Zbl
,[16] Weingarten hypersurfaces with prescribed gradient image, Math. Z. 240 (2002) 53-82. | MR | Zbl
,[17] The second boundary value problem for a class of Hessian equations, Comm. Partial Differential Equations 26 (2001) 859-882. | MR | Zbl
,[18] Oblique boundary value problems for equations of Monge-Ampère type, Calc. Var. Partial Differential Equations 7 (1998) 19-39. | MR | Zbl
,[19] On the second boundary value problem for equations of Monge-Ampère type, J. Reine Angew. Math. 487 (1997) 115-124. | MR | Zbl
,- On the second boundary value problem for a class of fully nonlinear flow III, Journal of Evolution Equations, Volume 24 (2024) no. 3 | DOI:10.1007/s00028-024-00983-6
- Entire solutions to the parabolic Monge–Ampère equation with unbounded nonlinear growth in time, Nonlinear Analysis, Volume 239 (2024), p. 113441 | DOI:10.1016/j.na.2023.113441
- On the second boundary value problem for Lagrangian mean curvature equation, Calculus of Variations and Partial Differential Equations, Volume 62 (2023) no. 3 | DOI:10.1007/s00526-022-02412-3
- On the second boundary value problem for special Lagrangian curvature potential equation, Mathematische Zeitschrift, Volume 302 (2022) no. 1, p. 391 | DOI:10.1007/s00209-022-03060-1
- The Neumann Problem for Parabolic Hessian Quotient Equations, Acta Mathematica Sinica, English Series, Volume 37 (2021) no. 9, p. 1313 | DOI:10.1007/s10114-021-0340-7
- Neumann boundary value problem for general curvature flow with forcing term, Geometriae Dedicata, Volume 213 (2021) no. 1, p. 345 | DOI:10.1007/s10711-020-00585-9
- Self-similar solutions to the Hesse flow, Information Geometry, Volume 4 (2021) no. 2, p. 313 | DOI:10.1007/s41884-021-00054-6
- The Sinkhorn algorithm, parabolic optimal transport and geometric Monge–Ampère equations, Numerische Mathematik, Volume 145 (2020) no. 4, p. 771 | DOI:10.1007/s00211-020-01127-x
- On the Second Boundary Value Problem for a Class of Fully Nonlinear Flows I, International Mathematics Research Notices, Volume 2019 (2019) no. 18, p. 5539 | DOI:10.1093/imrn/rnx278
- On the second boundary value problem for a class of fully nonlinear flows II, Archiv der Mathematik, Volume 111 (2018) no. 4, p. 407 | DOI:10.1007/s00013-018-1197-6
- On the Second Boundary Value Problem for a Class of Fully Nonlinear Equations, The Journal of Geometric Analysis, Volume 27 (2017) no. 4, p. 2601 | DOI:10.1007/s12220-017-9774-7
- On the second boundary value problem for Lagrangian mean curvature flow, Journal of Functional Analysis, Volume 269 (2015) no. 4, p. 1095 | DOI:10.1016/j.jfa.2015.05.003
- Exterior problems for more general parabolic Monge–Ampère equation in more general domain, Journal of Mathematical Analysis and Applications, Volume 427 (2015) no. 2, p. 1190 | DOI:10.1016/j.jmaa.2015.02.087
- The Initial and Neumann Boundary Value Problem for a Class Parabolic Monge-Ampère Equation, Abstract and Applied Analysis, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/535629
- The Initial and Neumann Boundary Value Problem for A Class Parabolic Monge–Ampère Equation, Green Communications and Networks, Volume 113 (2012), p. 699 | DOI:10.1007/978-94-007-2169-2_82
- , 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC) (2011), p. 2292 | DOI:10.1109/aimsec.2011.6010936
- An efficient approach for the numerical solution of the Monge–Ampère equation, Applied Numerical Mathematics, Volume 61 (2011) no. 3, p. 298 | DOI:10.1016/j.apnum.2010.10.006
- Optimal mass transport for higher dimensional adaptive grid generation, Journal of Computational Physics, Volume 230 (2011) no. 9, p. 3302 | DOI:10.1016/j.jcp.2011.01.025
- On Jörgens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge–Ampère equations, Journal of Differential Equations, Volume 250 (2011) no. 1, p. 367 | DOI:10.1016/j.jde.2010.08.024
- Estimates and existence results for a fully nonlinear Yamabe problem on manifolds with boundary, Calculus of Variations and Partial Differential Equations, Volume 28 (2007) no. 4, p. 509 | DOI:10.1007/s00526-006-0057-6
Cité par 20 documents. Sources : Crossref