@article{AIHPC_2000__17_6_733_0, author = {Chou, Kai-Seng and Wang, Xu-Jia}, title = {A logarithmic {Gauss} curvature flow and the {Minkowski} problem}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {733--751}, publisher = {Gauthier-Villars}, volume = {17}, number = {6}, year = {2000}, mrnumber = {1804653}, zbl = {01558333}, language = {en}, url = {http://www.numdam.org/item/AIHPC_2000__17_6_733_0/} }
TY - JOUR AU - Chou, Kai-Seng AU - Wang, Xu-Jia TI - A logarithmic Gauss curvature flow and the Minkowski problem JO - Annales de l'I.H.P. Analyse non linéaire PY - 2000 SP - 733 EP - 751 VL - 17 IS - 6 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_2000__17_6_733_0/ LA - en ID - AIHPC_2000__17_6_733_0 ER -
Chou, Kai-Seng; Wang, Xu-Jia. A logarithmic Gauss curvature flow and the Minkowski problem. Annales de l'I.H.P. Analyse non linéaire, Tome 17 (2000) no. 6, pp. 733-751. http://www.numdam.org/item/AIHPC_2000__17_6_733_0/
[1] Contraction of convex hypersurfaces by their affine normal, J. Differential Geom. 43 (1996) 207-229. | MR | Zbl
,[2] Evolving convex curves, Calc. Var. PDE 1 (1998) 315-371. | MR | Zbl
,[3] On the regularity of the solution of the n-dimensional Minkowski problem, Comm. Pure Appl. Math. 29 (1976) 495-516. | MR | Zbl
, ,[4] Deforming a hypersurface by its Gauss-Kronecker curvature, Comm. Pure Appl. Math 38 (1985) 867-882. | MR | Zbl
( ),[5] Convex hypersurfaces with prescribed Gauss-Kronecker curvature, J. Differential Geom. 34 (1991) 389-410. | MR | Zbl
( ),[6] Anisotropic curvature flows for plane curves, Duke Math. J. 97 (1999) 579-619. | MR | Zbl
, ,[7] Deforming convex hypersurfaces by the n-th root of the Gaussian curvature, J. Differential Geom. 22 (1985) 117-138. | MR | Zbl
,[8] Shapes of worn stones, Mathematica 21 (1974) 1-11. | MR | Zbl
,[9] Evolving plane curves by curvature in relative geometries II, Duke Math. J. 75 (1994) 79-98. | MR | Zbl
, ,[10] Flow of non convex hypersurfaces into spheres, J. Differential Geom. 32 (1990) 299-314. | Zbl
,[11] Nonlinear Elliptic and Parabolic Equations of the Second Order, D. Reidel, 1987. | MR | Zbl
,[12] On differential geometry in the large, I (Minkowski's problem), Trans. Amer. Math. Soc. 43 (1938) 258-270. | JFM | MR | Zbl
,[13] Allgemeine Lehrsätze über die konvexen Polyeder, Nachr. Ges. Wiss. Göttingen (1897) 198-219. | EuDML | JFM
,[14] Volumen and Oberfläche, Math. Ann. 57 (1903) 447-495. | EuDML | JFM | MR
,[15] Su un problema di Minkowski, Rend. Sem. Mat. Roma 3 (1939) 96- 108. | JFM | MR | Zbl
,[16] The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953) 337-394. | MR | Zbl
,[17] The Multidimensional Minkowski Problem, J. Wiley, New York, 1978.
,[18] On the expansion of convex hypersurfaces by symmetric functions of their principal radii of curvature, J. Differential Geom. 33 (1991) 91-125. | MR | Zbl
,