Heteroclinic orbits for spatially periodic hamiltonian systems
Annales de l'I.H.P. Analyse non linéaire, Tome 8 (1991) no. 5, pp. 477-497.
@article{AIHPC_1991__8_5_477_0,
     author = {Felmer, P. L.},
     title = {Heteroclinic orbits for spatially periodic hamiltonian systems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {477--497},
     publisher = {Gauthier-Villars},
     volume = {8},
     number = {5},
     year = {1991},
     mrnumber = {1136353},
     zbl = {0749.58021},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1991__8_5_477_0/}
}
TY  - JOUR
AU  - Felmer, P. L.
TI  - Heteroclinic orbits for spatially periodic hamiltonian systems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1991
SP  - 477
EP  - 497
VL  - 8
IS  - 5
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPC_1991__8_5_477_0/
LA  - en
ID  - AIHPC_1991__8_5_477_0
ER  - 
%0 Journal Article
%A Felmer, P. L.
%T Heteroclinic orbits for spatially periodic hamiltonian systems
%J Annales de l'I.H.P. Analyse non linéaire
%D 1991
%P 477-497
%V 8
%N 5
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPC_1991__8_5_477_0/
%G en
%F AIHPC_1991__8_5_477_0
Felmer, P. L. Heteroclinic orbits for spatially periodic hamiltonian systems. Annales de l'I.H.P. Analyse non linéaire, Tome 8 (1991) no. 5, pp. 477-497. http://www.numdam.org/item/AIHPC_1991__8_5_477_0/

[1] K.C. Chang, Y. Long and E. Zehnder, Forced Oscillations for the Triple Pendulum, E.T.H. Zürich Report, August 1988.

[2] P. Felmer, Multiple Solutions for Lagrangean Systems in Tn, Nonlinear Analysis T.M.A. (to appear). | Zbl

[3] P. Felmer, Periodic Solutions of Spatially Periodic Hamiltonian Systems, Journal of Differential Equations (to appear). | MR | Zbl

[4] G. Fournier and M. Willem, Multiple Solutions of the Forced Double Pendulum Equation, Preprint.

[5] V. Coti-Zelati and I. Ekeland, A Variational Approach to Homoclinic Orbits in Hamiltonian Systems, Preprint, S.I.S.S.A., 1988.

[6] H. Hofer and K. Wysocki, First Order Elliptic Systems and the Existence of Homoclinic Orbits in Hamiltonian System, Preprint.

[7] P. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations", C.B.M.S. Regional Conference Series in Mathematics, 65, A.M.S., Providence, 1986. | MR | Zbl

[8] P. Rabinowitz, Periodic and Heteroclinic Orbits for a Periodic Hamiltonian System, Analyse Nonlineare (to appear). | Numdam | MR | Zbl

[9] P. Rabinowitz, Homoclinic Orbits for a Class of Hamiltonian Systems, Preprint. | MR

[10] K. Tanaka, Homoclinic Orbits for a Singular Second Order Hamiltonian System, Preprint, 1989.