@article{AIHPC_1991__8_5_477_0, author = {Felmer, P. L.}, title = {Heteroclinic orbits for spatially periodic hamiltonian systems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {477--497}, publisher = {Gauthier-Villars}, volume = {8}, number = {5}, year = {1991}, mrnumber = {1136353}, zbl = {0749.58021}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1991__8_5_477_0/} }
TY - JOUR AU - Felmer, P. L. TI - Heteroclinic orbits for spatially periodic hamiltonian systems JO - Annales de l'I.H.P. Analyse non linéaire PY - 1991 SP - 477 EP - 497 VL - 8 IS - 5 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1991__8_5_477_0/ LA - en ID - AIHPC_1991__8_5_477_0 ER -
Felmer, P. L. Heteroclinic orbits for spatially periodic hamiltonian systems. Annales de l'I.H.P. Analyse non linéaire, Tome 8 (1991) no. 5, pp. 477-497. http://www.numdam.org/item/AIHPC_1991__8_5_477_0/
[1] Forced Oscillations for the Triple Pendulum, E.T.H. Zürich Report, August 1988.
, and ,[2] Multiple Solutions for Lagrangean Systems in Tn, Nonlinear Analysis T.M.A. (to appear). | Zbl
,[3] Periodic Solutions of Spatially Periodic Hamiltonian Systems, Journal of Differential Equations (to appear). | MR | Zbl
,[4] Multiple Solutions of the Forced Double Pendulum Equation, Preprint.
and ,[5] A Variational Approach to Homoclinic Orbits in Hamiltonian Systems, Preprint, S.I.S.S.A., 1988.
and ,[6] First Order Elliptic Systems and the Existence of Homoclinic Orbits in Hamiltonian System, Preprint.
and ,[7] Minimax Methods in Critical Point Theory with Applications to Differential Equations", C.B.M.S. Regional Conference Series in Mathematics, 65, A.M.S., Providence, 1986. | MR | Zbl
, "[8] Periodic and Heteroclinic Orbits for a Periodic Hamiltonian System, Analyse Nonlineare (to appear). | Numdam | MR | Zbl
,[9] Homoclinic Orbits for a Class of Hamiltonian Systems, Preprint. | MR
,[10] Homoclinic Orbits for a Singular Second Order Hamiltonian System, Preprint, 1989.
,