Homoclinic orbits for a singular second order hamiltonian system
Annales de l'I.H.P. Analyse non linéaire, Tome 7 (1990) no. 5, pp. 427-438.
@article{AIHPC_1990__7_5_427_0,
     author = {Tanaka, Kazunaga},
     title = {Homoclinic orbits for a singular second order hamiltonian system},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {427--438},
     publisher = {Gauthier-Villars},
     volume = {7},
     number = {5},
     year = {1990},
     mrnumber = {1138531},
     zbl = {0712.58026},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1990__7_5_427_0/}
}
TY  - JOUR
AU  - Tanaka, Kazunaga
TI  - Homoclinic orbits for a singular second order hamiltonian system
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1990
SP  - 427
EP  - 438
VL  - 7
IS  - 5
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPC_1990__7_5_427_0/
LA  - en
ID  - AIHPC_1990__7_5_427_0
ER  - 
%0 Journal Article
%A Tanaka, Kazunaga
%T Homoclinic orbits for a singular second order hamiltonian system
%J Annales de l'I.H.P. Analyse non linéaire
%D 1990
%P 427-438
%V 7
%N 5
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPC_1990__7_5_427_0/
%G en
%F AIHPC_1990__7_5_427_0
Tanaka, Kazunaga. Homoclinic orbits for a singular second order hamiltonian system. Annales de l'I.H.P. Analyse non linéaire, Tome 7 (1990) no. 5, pp. 427-438. http://www.numdam.org/item/AIHPC_1990__7_5_427_0/

[1] A. Ambrosetti and V. Coti-Zelati, Critical points with lack of compactness and applications to singular dynamical system, Ann Mat. Pura Appl., Vol. 149, 1987, pp. 237-259. | MR | Zbl

[2] A. Ambrosetti and V. Coti-Zelati, Periodic solutions of singular dynamical systems, Periodic solutions of Hamiltonian systems and related topics, P. H. RABINOWITZ et al. Eds., V209, NATO ASI Series, Reidel, 1987, pp. 1-10. | MR | Zbl

[3] A. Ambrosetti and V. Coti-Zelati, Noncollision orbits for a class of Keplerian-like potentials, Ann. Inst. Henri Poincaré, Analyse non linéaire, Vol. 5, 1988, pp. 287-295. | Numdam | MR | Zbl

[4] A. Bahri and P.H. Rabinowitz, A minimax methods for a class of Hamiltonian systems with singular potentials, J. Funct. Anal., Vol. 82, 1989, pp. 412-428. | MR | Zbl

[5] M. Degiovanni, F. Giannoni and A. Marino, Periodic solutions of dynamical systems with Newtonian type potentials, Periodic solutions of Hamiltonian systems and related topics, P. H. RABINOWITZ et al. Eds., V209, NATO ASI Series, Reidel, 1987, pp. 111- 115. | MR | Zbl

[6] C. Greco, Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Analysis ; T.M.A., Vol. 12, 1988, pp. 259-269. | MR | Zbl

[7] C. Greco, Remarks on periodic solutions for some dynamical systems with singularities, Periodic solutions of Hamiltonian systems and related topics, P. H. RABINOWITZ et al. Eds., V209, NATO ASI Series, Reidel, 1987, pp. 169-173. | MR | Zbl

[8] W.B. Gordon, Conservative dynamical systems involving strong forces, Trans. Am. Math. Soc., Vol. 204, 1975, pp. 113-135. | MR | Zbl

[9] W. Klingenberg, Lectures on closed geodesics, Grundlehren der Math. Wis.., Vol. 235, Springer-Verlag, Berlin-New York, 1978. | MR | Zbl

[10] L.A. Lyusternik and A.I. Fet, Variational problems on closed manifolds, Dokl. Akad. Nauk. U.S.S.R. (N.S.), Vol. 81, 1951, pp. 17-18. | MR | Zbl

[11] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, C.B.M.S. Reg. Conf. Ser. in Math. #65, Am. Math. Soc., Providence, RI, 1986. | MR | Zbl

[12] P.H. Rabinowitz, Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. Henri Poincaré, Analyse non linéaire, Vol. 6, 1989, pp. 331-346. | EuDML | Numdam | MR | Zbl

[13] V. Benci and F. Giannoni, Homoclinic orbits on compact manifolds, preprint, Università di Pisa, 1989. | MR | Zbl

[14] V. Coti-Zelati and I. Ekeland, A variational approach to homoclinic orbits in Hamiltonian systems, preprint, S.I.S.S.A., 1988.