Nous étudions des sur-solutions minimales d'équations stochastiques rétrogrades. Nous montrons l'existence et l'unicité de telles sur-solutions minimales lorsque le générateur est conjointement semi-continu inférieurement, minoré par une fonction affine de la variable de contrôle et satisfait une condition spécifique de normalisation. Le résultat principal est obtenu en utilisant une convergence de semi-martingales.
We study minimal supersolutions of backward stochastic differential equations. We show the existence and uniqueness of the minimal supersolution, if the generator is jointly lower semicontinuous, bounded from below by an affine function of the control variable, and satisfies a specific normalization property. Semimartingale convergence is used to establish the main result.
Mots-clés : supersolutions of backward stochastic differential equations, semimartingale convergence
@article{AIHPB_2014__50_2_524_0, author = {Heyne, Gregor and Kupper, Michael and Mainberger, Christoph}, title = {Minimal supersolutions of {BSDEs} with lower semicontinuous generators}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {524--538}, publisher = {Gauthier-Villars}, volume = {50}, number = {2}, year = {2014}, doi = {10.1214/12-AIHP523}, mrnumber = {3189083}, zbl = {1296.60173}, language = {en}, url = {https://www.numdam.org/articles/10.1214/12-AIHP523/} }
TY - JOUR AU - Heyne, Gregor AU - Kupper, Michael AU - Mainberger, Christoph TI - Minimal supersolutions of BSDEs with lower semicontinuous generators JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 524 EP - 538 VL - 50 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/12-AIHP523/ DO - 10.1214/12-AIHP523 LA - en ID - AIHPB_2014__50_2_524_0 ER -
%0 Journal Article %A Heyne, Gregor %A Kupper, Michael %A Mainberger, Christoph %T Minimal supersolutions of BSDEs with lower semicontinuous generators %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 524-538 %V 50 %N 2 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/12-AIHP523/ %R 10.1214/12-AIHP523 %G en %F AIHPB_2014__50_2_524_0
Heyne, Gregor; Kupper, Michael; Mainberger, Christoph. Minimal supersolutions of BSDEs with lower semicontinuous generators. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 2, pp. 524-538. doi : 10.1214/12-AIHP523. https://www.numdam.org/articles/10.1214/12-AIHP523/
[1] Multidimensional BSDEs with super-linear growth coefficient: Application to degenerate systems of semilinear PDEs. C. R. Math. Acad. Sci. Paris 348 (2010) 677-682. | MR | Zbl
, and .[2] On convergence of semimartingales. In Séminaire de Probabilités XXIV 188-193. Lect. Notes Math. 1426. Springer, Berlin, 1988/1989. | Numdam | MR | Zbl
and .[3] Existence, minimality and approximation of solutions to BSDEs with convex drivers. Stochastic Process. Appl. 122 (2012) 1540-1565. | MR | Zbl
and .[4] A compactness principle for bounded sequences of martingales with applications. In Proceedings of the Seminar of Stochastic Analysis, Random Fields and Applications 133-173. Progress in Probability 45. Birkhäuser, Basel, 1996. | MR | Zbl
and .[5] Backward SDEs with superquadratic growth. Probab. Theory Related Fields 150 (2011) 145-192. | MR | Zbl
, and .[6] Probabilities and Potential. B: Theory of Martingales. North-Holland Mathematics Studies 72. North-Holland, Amsterdam, 1982. Translated from the French by J. P. Wilson. | MR | Zbl
and .[7] Minimal supersolutions of convex BSDEs. Ann. Probab. 41 (2013) 3973-4001. | MR | Zbl
, and .[8] Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1-71. | MR | Zbl
, and .[9] Brownian Motion and Stochastic Calculus, 2nd edition. Graduate Texts in Mathematics 113. Springer, New York, 1991. | MR | Zbl
and .[10] Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28 (2000) 558-602. | MR | Zbl
.[11] Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 (1990) 55-61. | MR | Zbl
and .
[12] Backward SDE and related
[13] Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer's type. Probab. Theory Related Fields 113 (1999) 473-499. | MR | Zbl
.
[14] The smallest
[15] Stochastic Integration and Differential Equations, 2nd edition. Springer, Berlin, 2005. Version 2.1, Corrected third printing. | MR | Zbl
.[16] Continuous Martingales and Brownian Motion, 3rd edition. Fundamental Principles of Mathematical Sciences 293. Springer, Berlin, 1999. | MR | Zbl
and .- Existence, uniqueness and comparison theorem on unbounded solutions of scalar super-linear BSDEs, Stochastic Processes and their Applications, Volume 157 (2023), p. 335 | DOI:10.1016/j.spa.2022.12.008
- Characterization of fully coupled FBSDE in terms of portfolio optimization, Electronic Journal of Probability, Volume 25 (2020) no. none | DOI:10.1214/20-ejp412
- Existence and uniqueness results for BSDE with jumps: the whole nine yards, Electronic Journal of Probability, Volume 23 (2018) no. none | DOI:10.1214/18-ejp240
- One dimensional BSDEs with logarithmic growth application to PDEs, Stochastics, Volume 89 (2017) no. 6-7, p. 1061 | DOI:10.1080/17442508.2017.1311900
- Minimal supersolutions of convex BSDEs under constraints, ESAIM: Probability and Statistics, Volume 20 (2016), p. 178 | DOI:10.1051/ps/2016011
- Stability and Markov property of forward backward minimal supersolutions, Electronic Journal of Probability, Volume 21 (2016) no. none | DOI:10.1214/16-ejp4276
- A general Doob-Meyer-Mertens decomposition for g-supermartingale systems, Electronic Journal of Probability, Volume 21 (2016) no. none | DOI:10.1214/16-ejp4527
- PORTFOLIO OPTIMIZATION UNDER NONLINEAR UTILITY, International Journal of Theoretical and Applied Finance, Volume 19 (2016) no. 05, p. 1650029 | DOI:10.1142/s0219024916500291
Cité par 8 documents. Sources : Crossref