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Abstract. We study minimal supersolutions of backward stochastic differential equations. We show the existence and uniqueness
of the minimal supersolution, if the generator is jointly lower semicontinuous, bounded from below by an affine function of the
control variable, and satisfies a specific normalization property. Semimartingale convergence is used to establish the main result.

Résumé. Nous étudions des sur-solutions minimales d’équations stochastiques rétrogrades. Nous montrons l’existence et l’unicité
de telles sur-solutions minimales lorsque le générateur est conjointement semi-continu inférieurement, minoré par une fonction
affine de la variable de contrôle et satisfait une condition spécifique de normalisation. Le résultat principal est obtenu en utilisant
une convergence de semi-martingales.
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1. Introduction

On a filtered probability space, the filtration of which is generated by a d-dimensional Brownian motion, we give
conditions ensuring that the set A(ξ, g), consisting of all supersolutions (Y,Z) of a backward stochastic differential
equation with terminal condition ξ and generator g, has a minimal element. Recall that a supersolution can be seen
as, compare for instance [7,8,13], a càdlàg value process Y and a control process Z, such that, for all 0 ≤ s ≤ t ≤ T ,

Ys −
∫ t

s

gu(Yu,Zu)du +
∫ t

s

Zu dWu ≥ Yt and YT ≥ ξ

is satisfied.
Our ansatz to find the minimal supersolution is partially inspired by the methods and the setting introduced in

Drapeau et al. [7]. More precisely, we start by considering the process Ê g(ξ), defined by

Ê g
t (ξ) = ess inf

{
Yt ∈ L0(Ft ): (Y,Z) ∈ A(ξ, g)

}
, t ∈ [0, T ].

It was shown in [7] that under a positivity assumption on the generator – this can be relaxed to a linear bound from
below – the process Ê g(ξ) is in fact a supermartingale. Moreover, under such an assumption, given an adequate space
of control processes, it follows that every value process of a supersolution is also a supermartingale. This is one of the
key features of the approach in [7], and we will also adhere to the concept of supermartingale supersolutions. It allows
us to consider the process E g(ξ) = lims↓·,s∈Q Ê g

s (ξ) as a candidate for the value process of the minimal supersolution.
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Now, given this candidate value process, one needs to find a candidate control process Ẑ such that (E g(ξ), Ẑ) ∈
A(ξ, g). In [7] this was done by constructing a monotone decreasing sequence of supersolutions converging to E g(ξ)

and by drawing on compactness results for sequences of martingales given in Delbaen and Schachermayer [4]. Owing
to this approach, it was possible to characterize the candidate control process as the limit of a sequence of convex
combinations of control processes. Therefore, in order to verify that the pair (E g(ξ), Ẑ) is a supersolution, it was
crucial that the generator is convex with respect to the control variable. The principal aim of the current paper is to
drop this convexity assumption.

In order to obtain the existence of a minimal supersolution without taking convex combinations, we proceed as
follows. Our first idea is to use results on semimartingale convergence given in Barlow and Protter [2]. Loosely
speaking, given a sequence of special semimartingales that converges uniformly, in some sense to be made precise, to
some limit process, their result guarantees that the limit process is also a special semimartingale and that the locale
martingale parts converge in H1 to the local martingale in the decomposition of the limit process. Interpreted in our
setting, this implies that, if we can construct a sequence ((Y n,Zn)) of supersolutions such that (Y n) converges in the
R∞-norm to E g(ξ), then we obtain the existence of a candidate control process Ẑ as the limit of the sequence (Zn).

Now, our second main idea shows how to construct a sequence converging in the sense of [2]. To that end, we
prove that, for ε > 0, there exists (Y ε,Zε) ∈ A(ξ, g) such that ‖Y ε − E g(ξ)‖R∞ ≤ ε. Note that it is not possible to
infer the existence of such a supersolution from the approach taken in [7], where the approximating sequence was
decreasing, but only uniform on a finite set of rationals. Therefore, we have to develop a new method. The central
idea is to define a suitable preorder on the set of supersolutions and to use Zorn’s lemma to show the existence of a
maximal element. To set up our preorder, we associate with each supersolution (Y,Z) the stopping time τ , at which
Y first leaves the ε-neighborhood of E g(ξ). With this at hand, we say (Y 1,Z1) dominates (Y 2,Z2), if and only if
τ 1 ≥ τ 2 and the processes coincide up to τ 2. Given this preorder, we have to show that each totally ordered chain has
an upper bound. In order to achieve this, we assume a mild normalization condition on the generator. In its simplest
form it states that g equals zero as soon as the control variable is zero. This assumption is well known especially in
the context of g-expectations, see for example Peng [12] and [7]. More generally, we ask for a certain very simple
SDE to have a solution on some short time interval. Combining this assumption with the supermartingale structure
of our setting, in particular with arguments based on supermartingale convergence, yields the existence of an upper
bound. Moreover, we can show that the stopping time associated with the maximal element provided by Zorn’s lemma
equals T .

The previous arguments show that we obtain indeed a pair of candidate processes (E g(ξ), Ẑ). It remains to verify
that the candidate pair is an element of A(ξ, g). However, this is straightforward by assuming that the generator is
jointly lower semicontinuous and can be done by similar arguments as in [7].

Let us briefly discuss the existing literature on related problems, a broader discussion of which can be found in
[7]. Nonlinear BSDEs were first introduced in Pardoux and Peng [11]. In this seminal work existence and uniqueness
results were given for the case of Lipschitz generators and square integrable terminal conditions. Kobylanski [10]
studies BSDEs with quadratic generators, whereas Delbaen et al. [5] consider superquadratic BSDEs with positive
generators that are convex in z and independent of y. BSDEs with generators that are not locally Lipschitz are studied
in Bahlali et al. [1]. Among the first introducing supersolutions of BSDEs were El Karoui et al. [8], Section 2.3.
Further references can also be found in Peng [13], who studies the existence and uniqueness of constrained minimal
supersolutions under the assumption of a Lipschitz generator and square integrable terminal conditions. For a link
between minimal supersolutions of BSDEs and solutions of reflected BSDEs see Peng and Xu [14]. Most recently,
Cheridito and Stadje [3] have analyzed existence and stability of supersolutions of BSDEs. They consider terminal
conditions which are functionals of the underlying Brownian motion and generators that are convex in z and Lipschitz
in y, and they work with discrete time approximations of BSDEs. Furthermore, the concept of supersolutions is
closely related to Peng’s g-expectations, see for instance [7,12], since the mapping ξ �→ E g

0 (ξ) can be seen as a
nonlinear expectation.

The remainder of this paper is organized as follows. Setting and notations are specified in Section 2. A precise
definition of minimal supersolutions and important structural properties of Ê g(ξ), along with the main existence
theorem, can then be found in Sections 3.1 and 3.2. Possible relaxations on the assumptions imposed on the generator
are discussed in Section 3.3. Finally, we conclude the paper with a generalization of our results to the case of arbitrary
continuous local martingales in Section 3.4.
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2. Setting and notations

We consider a filtered probability space (Ω, F , (Ft )t≥0,P ), where the filtration (Ft ) is generated by a d-dimensional
Brownian motion W and is assumed to satisfy the usual conditions. For some fixed time horizon T > 0 and for all t ∈
[0, T ], the sets of Ft -measurable random variables are denoted by L0(Ft ), where random variables are identified in the
P -almost sure sense. Let furthermore denote Lp(Ft ) the set of random variables in L0(Ft ) with finite p-norm, for p ∈
[1,+∞]. Inequalities and strict inequalities between any two random variables or processes X1,X2 are understood in
the P -almost sure or in the P ⊗ dt -almost everywhere sense, respectively. We denote by T the set of stopping times
with values in [0, T ] and hereby call an increasing sequence of stopping times (τn) such that P [⋃n{τn = T }] = 1 a
localizing sequence of stopping times. By S := S(R) we denote the set of càdlàg progressively measurable processes
Y with values in R. For p ∈ [1,+∞[, we further denote by Hp the set of càdlàg local martingales M with finite

Hp-norm on [0, T ], that is ‖M‖Hp := E[〈M,M〉p/2
T ]1/p < ∞. By Lp := Lp(W) we denote the set of R1×d -valued,

progressively measurable processes Z such that
∫

Z dW ∈ Hp , that is, ‖Z‖Lp := E[(∫ T

0 |Zs |2 ds)p/2]1/p is finite.
For Z ∈ Lp , the stochastic integral

∫
Z dW is well defined, see Protter [15], and is by means of the Burkholder–

Davis–Gundy inequality [15], Theorem 48, a continuous martingale. We further denote by L := L(W) the set of
R1×d -valued, progressively measurable processes Z such that there exists a localizing sequence of stopping times
(τn) with Z1[0,τn] ∈ L1, for all n ∈ N. For Z ∈ L, the stochastic integral

∫
Z dW is well defined and is a continuous

local martingale. Furthermore, for a process X, let X∗ denote the following expression X∗ := supt∈[0,T ] |Xt |, by which
we define the norm ‖X‖R∞ := ‖X∗‖L∞ .

We call a càdlàg semimartingale X a special semimartingale, if it can be decomposed into X = X0 +M +A, where
M is a local martingale and A a predictable process of finite variation such that M0 = A0 = 0. Such a decomposition
is then unique, compare for instance [15], Chapter III, Theorem 30, and is called the canonical decomposition of X.

3. Minimal supersolutions of BSDEs

3.1. First definitions and structural properties

Throughout this paper, a generator is a jointly measurable function g from Ω × [0, T ] × R × R1×d to R ∪ {+∞}
where Ω × [0, T ] is endowed with the progressive σ -field. Given a generator g and a terminal condition ξ ∈ L0(FT ),
a pair (Y,Z) ∈ S × L is a supersolution of a BSDE, if, for 0 ≤ s ≤ t ≤ T , holds

Ys −
∫ t

s

gu(Yu,Zu)du +
∫ t

s

Zu dWu ≥ Yt and YT ≥ ξ. (3.1)

For a supersolution (Y,Z), we call Y the value process and Z its corresponding control process. Note that the formu-
lation in (3.1) is equivalent to the existence of a càdlàg increasing process K , with K0 = 0, such that

Yt = ξ +
∫ T

t

gu(Yu,Zu)du + (KT − Kt) −
∫ T

t

Zu dWu, t ∈ [0, T ]. (3.2)

Although the notation in (3.2) is standard in the literature concerning supersolutions of BSDEs, see for example [8]
and [13], we will work with (3.1), since the proof of our main result exploits this structure. A control process Z is said
to be admissible, if the continuous local martingale

∫
Z dW is a supermartingale. Throughout this paper a generator

g is said to be:

(LSC) If (y, z) �→ g(ω, t, y, z) is lower semicontinuous, for all (ω, t) ∈ Ω × [0, T ].
(POS) Positive, if g(y, z) ≥ 0, for all (y, z) ∈ R × R1×d .
(NOR) Normalized, if gt (y,0) = 0, for all (t, y) ∈ [0, T ] × R.

We are now interested in the set

A(ξ, g) := {
(Y,Z) ∈ S × L: Z is admissible and (3.1) holds

}
(3.3)
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and the process

Ê g
t (ξ) := ess inf

{
Yt ∈ L0(Ft ): (Y,Z) ∈ A(ξ, g)

}
, t ∈ [0, T ]. (3.4)

A pair (Y,Z) is called minimal supersolution, if (Y,Z) ∈ A(ξ, g), and if for any other supersolution (Y ′,Z′) ∈
A(ξ, g), holds Yt ≤ Y ′

t , for all t ∈ [0, T ].
For the proof of our main existence theorem we will need some auxiliary results concerning structural properties

of Ê g(ξ) and supersolutions (Y,Z) in A(ξ, g).

Lemma 3.1. Let g be a generator satisfying (POS). Assume further that A(ξ, g) �= ∅ and that for the terminal
condition ξ holds ξ− ∈ L1(FT ). Then ξ ∈ L1(FT ) and, for any (Y,Z) ∈ A(ξ, g), the control Z is unique and the
value process Y is a supermartingale such that Yt ≥ E[ξ |Ft ]. Moreover, the unique canonical decomposition of Y is
given by

Y = Y0 + M − A, (3.5)

where M = ∫
Z dW and A is an increasing, predictable, càdlàg process with A0 = 0.

The proof of Lemma 3.1 can be found in [7], Lemma 3.2.

Proposition 3.2. Suppose that A(ξ, g) �= ∅ and let ξ ∈ L0(FT ) be a terminal condition such that ξ− ∈ L1(FT ). If g

satisfies (POS), then the process Ê g(ξ) is a supermartingale. In particular,

E g
t (ξ) := lim

s↓t,s∈Q
Ê g

s (ξ) for all t ∈ [0, T ) and E g
T (ξ) := ξ

is a càdlàg supermartingale such that

Ê g
t (ξ) ≥ E g

t (ξ) for all t ∈ [0, T ].
Furthermore, the following two pasting properties hold true.

1. Let (Zn) ⊂ L be admissible, σ ∈ T , and (Bn) ⊂ Fσ be a partition of Ω . Then the pasted process Z̄ = Z11[0,σ ] +∑
n≥1 Zn1Bn1]σ,T ] is admissible.

2. Let ((Y n,Zn)) ⊂ A(ξ, g), σ ∈ T and (Bn) ⊂ Fσ be as before. If Y 1
σ−1Bn ≥ Yn

σ 1Bn holds true for all n ∈ N, then
(Ȳ , Z̄) ∈ A(ξ, g), where

Ȳ = Y 11[0,σ [ +
∑
n≥1

Yn1Bn1[σ,T ] and Z̄ = Z11[0,σ ] +
∑
n≥1

Zn1Bn1]σ,T ].

Proof. The proof of the part concerning the process E g(ξ) can be found in [7], Proposition 3.4. Z̄ is admissible by
[7], Lemma 3.1.1. We can approximate σ from below by some foretelling sequence of stopping times (ηm),1 and
then show, analogously to [7], Lemma 3.1.2, that the pair (Ȳ , Z̄) satisfies Inequality (3.1) and is thus an element of

A(ξ, g). �

Remark 3.3. Whenever a stopping time σ takes values in a countable subset S of [0, T ], the adapted process Ê g(ξ)

evaluated at σ is defined by

Ê g
σ (ξ) :=

∑
s∈S

1As Ê g
s (ξ) with As := {σ = s}.

1Such a sequence satisfying ηm ≤ ηm+1 < σ , for all m ∈ N, and limm ηm = σ , always exists, since in a Brownian filtration every stopping time is
predictable, compare Revuz and Yor [16], Corollary V.3.3.
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It is straigthforward to show that Ê g
σ (ξ) is Fσ -measurable and consistent with (3.4), in the sense that

Ê g
σ (ξ) = ess inf

{
Yσ : (Y,Z) ∈ A(ξ, g)

}
.

Proposition 3.2 yields that the set {Yσ : (Y,Z) ∈ A(ξ, g)} is directed downwards, see [7], Proposition 3.3.1, and as a
consequence we can find, for any ε > 0, some (Y ε,Zε) ∈ A(ξ, g) such that

Y ε
σ ≤ Ê g

σ (ξ) + ε.

Proposition 3.4. Let 0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · be a sequence of stopping times converging to the finite stopping time
τ ∗ = limn→∞ τn. Further, let (Y n) be a sequence of càdlàg supermartingales such that Yn

τn− ≥ Yn+1
τn

, and which
satisfies Yn1[τn−1,τn[ ≥ M1[τn−1,τn[, where M is a uniformly integrable martingale. Then, for any sequence of stopping
times σn ∈ [τn−1, τn[, the limit Y∞ := limn→∞ Yn

σn
exists and the process

Ȳ :=
∑
n≥1

Yn1[τn−1,τn[ + Y∞1[τ∗,∞[

is a càdlàg supermartingale. Moreover, the limit Y∞ is independent of the approximating sequence (Y n
σn

) and, if all
Yn are continuous and Yn

τn
= Yn+1

τn
, for all n ∈ N, then Ȳ is continuous.

Proof. Note that (Y n
σn

) is a (Fσn)-supermartingale. Indeed, if (η̃m) ↑ τn is a foretelling sequence of stopping times,
then, with ηm := η̃m ∨ τn−1, the family ((Y n

ηm
)−)m∈N is uniformly integrable and we obtain

E
[
Yn+1

σn+1
|Fσn

] = E
[
E

[
Yn+1

σn+1
|Fτn

]∣∣Fσn

] ≤ E
[
Yn+1

τn
|Fσn

] ≤ E
[
Yn

τn−|Fσn

]
≤ lim inf

m
E

[
Yn

ηm
|Fσn

] ≤ lim inf
m

Yn
ηm∧σn

= Yn
σn

.

Moreover, ((Y n
σn

)−) is uniformly integrable. Hence, the sequence (Y n
σn

) converges by the supermartingale convergence
theorem, see Dellacherie and Meyer [6], Theorems V.28, 29, to some random variable Y∞, P -almost surely, and
thus Ȳ is well-defined. Furthermore, the limit Y∞ is independent of the approximating sequence (Y n

σn
). Indeed, for

any other sequence (σ̃n) with σ̃n ∈ [τn−1, τn[, the limit limn Y n
σ̃n

exists by the same argumentation. Now limn Y n
σn

=
limn Y n

σ̃n
= Y∞ holds, since the sequence (σ̂n) defined by

σ̂n :=
{

σn/2 ∨ σ̃n/2 for n even,
σ(n+1)/2 ∧ σ̃(n+1)/2 for n odd

satisfies σ̂n ∈ [τn−1, τn[ and limn Y n
σ̂n

exists. Thus, all limits must coincide. Next, we show that Ȳ σn is a supermartin-
gale, for all n ∈ N. To this end first observe that, for all 0 ≤ s ≤ t ,

E
[
Ȳ

σn
t − Ȳ σn

s |Fs

] =
n−2∑
k=0

E
[
E

[
Ȳ

σn

(τk+1∨s)∧t − Ȳ
σn

(τk∨s)∧t |F(τk∨s)∧t

]∣∣Fs

]

+ E
[
E

[
Ȳ

σn

(σn∨s)∧t − Ȳ
σn

(τn−1∨s)∧t |F(τn−1∨s)∧t

]∣∣Fs

]
+ E

[
E

[
Ȳ

σn
t − Ȳ

σn

(σn∨s)∧t |F(σn∨s)∧t

]∣∣Fs

]
.

Note further that, for each n ∈ N, the process Ȳ σn is càdlàg and can only jump downwards, that is, Ȳ
σn
t− ≥ Ȳ

σn
t , for all

t ∈ R. Observe to this end that, on the one hand, Ȳ
σn
τk− = Y k

τk− ≥ Y k+1
τk

= Ȳ
σn
τk

, for all 0 ≤ k ≤ n − 1, by assumption,
where we assumed τk−1 < τk , without loss of generality. On the other hand, Y k can only jump downwards. Indeed,
as càdlàg supermartingales, all Y k can be decomposed into Y k = Y k

0 + Mk − Ak , by the Doob–Meyer decomposition
theorem [15], Chapter III, Theorem 13, where Mk is a local martingale and Ak a predictable, increasing process with
Ak

0 = 0. Since in a Brownian filtration every local martingale is continuous, the claim follows.
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Thus, for all 0 ≤ k ≤ n − 2, and (η̃m) ↑ τk+1 a foretelling sequence of stopping times, it holds with ηm := η̃m ∨ τk ,

E
[
Ȳ

σn

(τk+1∨s)∧t − Ȳ
σn

(τk∨s)∧t |F(τk∨s)∧t

]
≤ E

[
Ȳ

σn

((τk+1−)∨s)∧t
− Ȳ

σn

(τk∨s)∧t
|F(τk∨s)∧t

]

= E
[
lim inf

m
Ȳ

σn

(ηm∨s)∧t
− Ȳ

σn

(τk∨s)∧t

∣∣F(τk∨s)∧t

]

≤ E
[
lim inf

m
Yk+1

(ηm∨s)∧t

∣∣F(τk∨s)∧t

]
− Y k+1

(τk∨s)∧t

≤ lim inf
m

E
[
Y k+1

(ηm∨s)∧t
|F(τk∨s)∧t

] − Y k+1
(τk∨s)∧t

≤ 0.

Moreover, E[Ȳ σn
t − Ȳ

σn

(σn∨s)∧t |F(σn∨s)∧t ] = 0, as well as

E
[
Ȳ

σn

(σn∨s)∧t
− Ȳ

σn

(τn−1∨s)∧t
|F(τn−1∨s)∧t

]
≤ E

[
Yn

(σn∨s)∧t − Yn
(τn−1∨s)∧t |F(τn−1∨s)∧t

] ≤ 0.

Combining this we obtain that E[Ȳ σn
t |Fs] ≤ Ȳ

σn
s . Furthermore, limn Ȳ

σn
t = Ȳt , for all t ∈ R. Indeed, let us write

limn Ȳ
σn
t = limn Ȳ

σn
t 1{t<τ∗} + limn Ȳ

σn
t 1{t≥τ∗}. Then, limn Ȳ

σn
t 1{t≥τ∗} = limn Y n

σn
1{t≥τ∗} = Y∞1{t≥τ∗} = Ȳt1{t≥τ∗} and

limn Ȳσn∧t1{t<τ∗} = Ȳt1{t<τ∗}. Hence, the claim follows. As a consequence of Fatou’s lemma it now holds that

E[Ȳt |Fs] ≤ lim inf
n→∞ E

[
Ȳ

σn
t |Fs

] ≤ lim inf
n→∞ Ȳ σn

s = Ȳs ,

since the family ((Ȳ
σn
t )−) is uniformly integrable. Hence, Ȳ is a supermartingale, which by construction has right-

continuous paths and Karatzas and Shreve [9], Theorem 1.3.8, then yields that Ȳ is even càdlàg. Finally, whenever all
Yn are continuous and Yn

τn
= Yn+1

τn
holds, for all n ∈ N, the process Ȳ is continuous per construction. �

3.2. Existence and uniqueness of minimal supersolutions

We are now ready to state our main existence result. Possible relaxations of the assumptions (POS) and (NOR) imposed
on the generator are discussed in Section 3.3. Note that it is not our focus to investigate conditions assuring the crucial
assumption that A(ξ, g) �= ∅. See [7] and the references therein for further details.

Theorem 3.5. Let g be a generator satisfying (LSC), (POS) and (NOR) and ξ ∈ L0(FT ) be a terminal condition such
that ξ− ∈ L1(FT ). If A(ξ, g) �= ∅, then E g(ξ) is the value process of the unique minimal supersolution, that is, there
exists a unique control process Ẑ ∈ L such that (E g(ξ), Ẑ) ∈ A(ξ, g).

Observe that Theorem 3.5 and Proposition 3.2 imply that E g(ξ) is a modification of Ê g(ξ).

Proof. Step 1: Uniform limit and verification. Since A(ξ, g) �= ∅, there exist (Y b,Zb) ∈ A(ξ, g). From now on we
restrict our focus to supersolutions (Ȳ , Z̄) in A(ξ, g) satisfying Ȳ0 ≤ Yb

0 . Indeed, since we are only interested in
minimal supersolutions, we can paste any value process of (Y,Z) ∈ A(ξ, g) at τ := inf{t > 0: Yb

t > Yt } ∧ T such that
Ȳ := Yb1[0,τ [ + Y1[τ,T ] satisfies Ȳ0 ≤ Yb

0 , where the corresponding control Z̄ is obtained as in Proposition 3.2.
Assume for the beginning that we can find a sequence ((Y n,Zn)) within A(ξ, g) such that

lim
n→∞

∥∥Yn − E g(ξ)
∥∥

R∞ = 0. (3.6)

Since all Yn are càdlàg supermartingales, they are, by the Doob–Meyer decomposition theorem, special semimartin-
gales with canonical decomposition Yn = Yn

0 + Mn − An as in (3.5). The supermartingale property of all
∫

Zn dW

and ξ < ∞, compare Lemma 3.1, imply that E[An
T ] ≤ Yb

0 − E[ξ ] ∈ L1(FT ). Hence, since each An is increasing,
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supn E[∫ T

0 |dAn
s |] < ∞. As (3.6) implies in particular that limn→∞ E[(Y n − E g(ξ))∗] = 0, it follows from [2], Theo-

rem 1 and Corollary 2, that E g(ξ) is a special semimartingale with canonical decomposition E g(ξ) = E g

0 (ξ) + M − A

and that

lim
n→∞

∥∥Mn − M
∥∥

H1 = 0, lim
n→∞E

[(
An − A

)∗] = 0.

The local martingale M is continuous and allows a representation of the form M = ∫
Ẑ dW , where Ẑ ∈ L, compare

[15], Chapter IV, Theorem 43. Since

E

[(∫ T

0

(
Zn

u − Ẑu

)2 du

)1/2]
−→

n→+∞ 0,

we have that, up to a subsequence, (Zn) converges P ⊗dt -almost everywhere to Ẑ and limn→∞
∫ t

0 Zn dW = ∫ t

0 Ẑ dW ,
for all t ∈ [0, T ], P -almost surely, due to the Burkholder–Davis–Gundy inequality. In particular, limn→∞ Zn(ω) =
Ẑ(ω), dt -almost everywhere, for almost all ω ∈ Ω .

In order to verify that (E g(ξ), Ẑ) ∈ A(ξ, g), we will use the convergence obtained above. More precisely, for all
0 ≤ s ≤ t ≤ T , Fatou’s lemma together with (3.6) and the lower semicontinuity of the generator yields

E g
s (ξ) −

∫ t

s

gu

(
E g

u (ξ), Ẑu

)
du +

∫ t

s

Ẑu dWu

≥ lim sup
n

(
Yn

s −
∫ t

s

gu

(
Yn

u ,Zn
u

)
du +

∫ t

s

Zn
u dWu

)
≥ lim sup

n
Y n

t = E g
t (ξ).

The above, the positivity of g and E g(ξ) ≥ E[ξ |F·] imply that
∫

Ẑ dW ≥ E[ξ |F·] − E g

0 (ξ). Hence, being bounded

from below by a martingale, the continuous local martingale
∫

Ẑ dW is a supermartingale. Thus, Ẑ is admissible
and (E g(ξ), Ẑ) ∈ A(ξ, g) and therefore, by Lemma 3.1, Ẑ is unique. Since we know by Proposition 3.2 that Ê g

t (ξ) ≥
E g

t (ξ), for all t ∈ [0, T ], we deduce that Ê g
t (ξ) = E g

t (ξ), for all t ∈ [0, T ], by the definition of Ê g(ξ). Hence, (E g(ξ), Ẑ)

is the unique minimal supersolution.
Step 2: A preorder on A(ξ, g). As to the existence of ((Y n,Zn)) satisfying (3.6), it is sufficient to show that, for

arbitrary ε > 0, we can find a supersolution (Y ε,Zε) satisfying

∥∥Y ε − E g(ξ)
∥∥

R∞ ≤ ε. (3.7)

We define the following preorder2 on A(ξ, g)

(
Y 1,Z1) � (

Y 2,Z2) ⇔ τ1 ≤ τ2 and
(
Y 1,Z1)1[0,τ1[ = (

Y 2,Z2)1[0,τ1[, (3.8)

where, for i = 1,2,

τi = inf
{
t ≥ 0: Y i

t > E g
t (ξ) + ε

} ∧ T . (3.9)

For any totally ordered chain ((Y i,Zi))i∈I within A(ξ, g) with corresponding stopping times τi , we want to construct
an upper bound. If we consider

τ ∗ = ess sup
i∈I

τi,

2Note that, in order to apply Zorn’s lemma, we need a partial order instead of just a preorder. To this end we consider equivalence classes of

processes. Two supersolutions (Y 1,Z1), (Y 2,Z2) ∈ A(ξ, g) are said to be equivalent, if (Y 1,Z1) � (Y 2,Z2) and (Y 2,Z2) � (Y 1,Z1). This
means that they are equal up to their corresponding stopping time τ1 = τ2 as in (3.9). This induces a partial order on the set of equivalence classes
and hence the use of Zorn’s lemma is justified.
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we know by the monotonicity of the stopping times that we can find a monotone subsequence (τm) of (τi)i∈I such
that τ ∗ = limm→∞ τm. In particular, τ ∗ is a stopping time. Furthermore, the structure of the preorder (3.8) yields that
the value processes of the supersolutions ((Ym,Zm)) corresponding to the stopping times (τm) satisfy

Ym+1
τm

≤ Ym+1
τm− = Ym

τm− for all m ∈ N, (3.10)

where the inequality follows from the fact that all Ym are càdlàg supermartingales, see the proof of Proposition 3.4.
Step 3: A candidate upper bound (Ȳ , Z̄) for the chain ((Y i,Zi))i∈I . We construct a candidate upper bound (Ȳ , Z̄)

for ((Y i,Zi))i∈I satisfying P [τ(Ȳ ) > τ ∗|τ ∗ < T ] = 1, with τ(Ȳ ) as in (3.9).
To this end, let (σ̄n) be a decreasing sequence of stopping times taking values in the rationals and converging

towards τ ∗ from the right.3 Then the stopping times σ̂n := σ̄n ∧ T satisfy σ̂n > τ ∗ and σ̂n ∈ Q, on {τ ∗ < T }, for all n

big enough. Let us furthermore define the following stopping time

τ̄ := inf

{
t > τ ∗:

∣∣E g
τ∗(ξ) − E g

t (ξ)
∣∣ >

ε

2

}
∧ T . (3.11)

Due to the right-continuity of E g(ξ) in τ ∗, it follows that τ̄ > τ ∗ on {τ ∗ < T }. We now set

σn := σ̂n ∧ τ̄ for all n ∈ N. (3.12)

The above stopping times still satisfy limn→∞ σn = τ ∗ and σn > τ ∗ on {τ ∗ < T }, for all n ∈ N. We further define the
following sets

An :=
{∣∣E g

τ∗(ξ) − Ê g
σm

(ξ)
∣∣ <

ε

8
, for all m ≥ n

}
∩ {

σn ∈ Q ∪ {T }}. (3.13)

They satisfy An ⊂ An+1 and
⋃

n An = Ω , by definition of the sequence (σm).4 Note further that An ∈ Fσn , since
Ê g

σm(ξ) is Fσm -measurable, for all m ≥ n, see Remark 3.3. Since the range of each σn is countable on the set An, we
deduce by Remark 3.3 that, for each n ∈ N, there exists (Ỹ n, Z̃n) ∈ A(ξ, g) such that

Ỹ n
σn

≤ Ê g
σn

(ξ) + ε

8
on the set An. (3.14)

Next we partition Ω into Bn := An \ An−1, where we set A0 := ∅ and τ0 := 0, and define the candidate upper bound
as

Ȳ =
∑
m≥1

Ym1[τm−1,τm[ + 1{τ∗<T }
∑
n≥1

1Bn

(
E g

τ∗(ξ) + ε

2

)
1[τ∗,σn[

+ 1{τ∗<T }
∑
n≥1

1BnỸ
n1[σn,T [, ȲT = ξ, (3.15)

Z̄ =
∑
m≥1

Zm1]τm−1,τm] + 1{τ∗<T }
∑
n≥1

Z̃n1Bn1]σn,T ]. (3.16)

Step 4: Verification of (Ȳ , Z̄) ∈ A(ξ, g). By verifying that the pair (Ȳ , Z̄) is an element of A(ξ, g), we identify
(Ȳ , Z̄) as an upper bound for the chain ((Y i,Zi))i∈I . Even more, P [τ(Ȳ ) > τ ∗|τ ∗ < T ] = 1 holds true, since, on the
set Bn, we have Ȳt = E g

τ∗(ξ) + ε
2 ≤ E g

t (ξ) + ε, for all t ∈ [τ ∗, σn[, due to the definition of τ̄ in (3.11).
Step 4a: The value process Ȳ is an element of S . By construction, the only thing to show is that Ȳτ∗−, the left limit

at τ ∗, exists. This follows from Proposition 3.4, since, by means of ((Ym,Zm)) ⊂ A(ξ, g) and ξ ∈ L1(FT ), all Ym

3Compare [9], Problem 2.24.
4Since on {τ∗ < T }, τ̄ > τ∗ and limn σ̂n = τ∗ with σ̂n ∈ Q ∪ {T }, it is ensured that there exists some n0 ∈ N, depending on ω, such that σn takes

values in the rationals for all n ≥ n0. By definition of E g(ξ) as the right-hand side limit of Ê g(ξ) on the rationals, the inequality in the definition of
An is satisfied for all n ≥ n0.
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are càdlàg supermartingales, see Lemma 3.1, which are bounded from below by a uniformly integrable martingale,
more precisely Ym ≥ E[ξ |F·], for all m ∈ N, and satisfy (3.10).

Step 4b: The control process Z̄ is an element of L and admissible. We proceed by defining, for each n ∈ N, the pro-
cesses Z̄n := ∑n

m=1 Zm1]τm−1,τm] = Z̄1[0,τn] = Zn1[0,τn] and Nn := ∫
Z̄n dW = ∫

Zn1[0,τn] dW , where the equalities
follow from (3.8). Observe that Nn+11[0,τn] = Nn1[0,τn], for all n ∈ N, and that (POS), (3.1) and the supermartingale
property of

∫
Zn dW imply

Nn1[τn−1,τn[ ≥ 1[τn−1,τn[
(−E

[
ξ−|F·

] − Yb
0

)
. (3.17)

By means of (3.17) and since ξ− ∈ L1(FT ), with N∞ := limn Nn
τn−1

, the process

N =
∑
n≥1

Nn1[τn−1,τn[ + 1[τ∗,T ]N∞

is a well-defined continuous supermartingale due to Proposition 3.4. Hence we may define a localizing sequence by
setting κn := inf{t ≥ 0: |Nt | > n}∧T and deduce that N is a continuous local martingale, because Nκn is a uniformly
integrable martingale, for all n ∈ N. Indeed, for each n ∈ N and m ∈ N, the process (Nm)κn , being a bounded stochastic
integral, is a martingale. Moreover, the family (Nm

κn∧t )m∈N is uniformly integrable and Nκn∧t = limm Nm
κn∧t , for all

t ∈ [0, T ]. Consequently, E[Nκn
t |Fs] = limm E[Nm

κn∧t |Fs] = limm Nm
κn∧s = N

κn
s , for all 0 ≤ s ≤ t ≤ T , and the claim

follows. Since the quadratic variation of a continuous local martingale is continuous and unique, see [9], p. 36, we
obtain

∫ τ∗

0
Z̄2

u du = lim
n

∫ κn∧τ∗

0
Z̄2

u du = lim
n

〈N〉κn∧τ∗ = 〈N〉τ∗ < ∞.

Observe that σ := ∑
n≥1 1Bnσn is an element of T . Indeed, {σ ≤ t} = ⋃

n≥1(Bn ∩ {σn ≤ t}) ∈ Ft , for all t ∈ [0, T ],
since Bn ∈ Fσn . From Z̄1]τ∗,σ ] = 0 we get that

∫ T

0
Z̄2

u du = 〈N〉τ∗ + 1{τ∗<T }
∑
n≥1

1Bn

∫ T

σ

(
Z̃n

u

)2 du < ∞,

since (Z̃n) ⊂ L. Hence we conclude that Z̄ ∈ L. As for the supermartingale property of
∫

Z̄ dW , observe that

∫ t∧τ∗

0
Z̄u dWu = lim

n→∞

∫ t∧τn

0
Zn

u dWu

≥ lim
n→∞−E

[
ξ−|Ft∧τn

] − Yb
0 = −E

[
ξ−|Ft∧τ∗

] − Yb
0 ,

where the inequality follows from (3.1) and (POS). Being bounded from below by a martingale, we deduce by Fatou’s
lemma that Z̄1[0,τ∗] is admissible. Since Z̄1]τ∗,σ ] = 0 and all Z̃n are admissible, it follows from Proposition 3.2 that
Z̄ is indeed admissible.

Step 4c: The pair (Ȳ , Z̄) is a supersolution. Finally, showing that (Ȳ , Z̄) satisfies (3.1) identifies (Ȳ , Z̄) as an
element of A(ξ, g). Observe first that, for all 0 ≤ s ≤ t ≤ T and all m ∈ N, the expression Ȳs − ∫ t

s
gu(Ȳu, Z̄u)du +∫ t

s
Z̄u dWu can be written as

Ȳs −
∫ (τm∨s)∧t

s

gu(Ȳu, Z̄u)du +
∫ (τm∨s)∧t

s

Z̄u dWu

−
∫ (τ∗∨s)∧t

(τm∨s)∧t

gu(Ȳu, Z̄u)du +
∫ (τ∗∨s)∧t

(τm∨s)∧t

Z̄u dWu −
∫ (σ∨s)∧t

(τ∗∨s)∧t

gu(Ȳu, Z̄u)du

+
∫ (σ∨s)∧t

(τ∗∨s)∧t

Z̄u dWu −
∫ t

(σ∨s)∧t

gu(Ȳu, Z̄u)du +
∫ t

(σ∨s)∧t

Z̄u dWu. (3.18)
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Now, we have that

Ȳs −
∫ (τm∨s)∧t

s

gu(Ȳu, Z̄u)du +
∫ (τm∨s)∧t

s

Z̄u dWu ≥ Ȳ(τm∨s)∧t , (3.19)

by Proposition 3.2, since ((Ym,Zm)) ⊂ A(ξ, g) and Ym
τm− ≥ Ym+1

τm
, for all m ∈ N, due to (3.10). By letting m tend to

infinity and noting that

lim
m→∞

∫ (τ∗∨s)∧t

(τm∨s)∧t

Z̄u dWu = 0 and lim
m→∞

∫ (τ∗∨s)∧t

(τm∨s)∧t

gu(Ȳu, Z̄u)du = 0,

(3.18) and (3.19) yield that

Ȳs −
∫ t

s

gu(Ȳu, Z̄u)du +
∫ t

s

Z̄u dWu

≥ Ȳ((τ∗−)∨s)∧t −
∫ (σ∨s)∧t

(τ∗∨s)∧t

gu(Ȳu, Z̄u)du +
∫ (σ∨s)∧t

(τ∗∨s)∧t

Z̄u dWu

−
∫ t

(σ∨s)∧t

gu(Ȳu, Z̄u)du +
∫ t

(σ∨s)∧t

Z̄u dWu. (3.20)

We now use that Ȳ can only jump downwards at τ ∗. Indeed, since Ȳ is càdlàg, in particular Ȳτ∗−, the left limit at τ ∗,
exists and is unique, P -almost surely. Furthermore, it holds that limm→∞ Ȳτm− = Ȳτ∗−. Indeed, since the left limits
Ȳτm− are well-defined, for all m ∈ N, we can choose a sequence of stopping times (ηm) such that ηm ∈ [τm−1, τm[ and
|Ȳτm− − Ȳηm | < 1

m
. Since limm ηm = τ ∗ and Ȳ is càdlàg, in particular holds limm Ȳηm = Ȳτ∗− and the claim follows

by an application of the triangular inequality. Thus

Ȳτ∗− = lim
m

Ȳτm− = lim
m

Ym
τm− ≥ lim

m
Ym

τm

≥ lim
m

E g
τm

(ξ) + ε = E g
τ∗−(ξ) + ε ≥ E g

τ∗(ξ) + ε > Ȳτ∗ .

The first and third inequality hold, since càdlàg supermartingale can only jump downwards, see the proof of Proposi-
tion 3.4. Hence, (3.20) can be further estimated by

Ȳs −
∫ t

s

gu(Ȳu, Z̄u)du +
∫ t

s

Z̄u dWu

≥ Ȳ(τ∗∨s)∧t −
∫ t

(σ∨s)∧t

gu(Ȳu, Z̄u)du +
∫ t

(σ∨s)∧t

Z̄u dWu,

where we used that

∫ (σ∨s)∧t

(τ∗∨s)∧t

gu(Ȳu, Z̄u)du =
∫ (σ∨s)∧t

(τ∗∨s)∧t

Z̄u dWu = 0,

due to (3.16), the definition of σ , and (NOR). Now observe that Ȳ(τ∗∨s)∧t ≥ Ȳ(σ∨s)∧t , since Ȳ1[τ∗,σ [ = (E g
τ∗(ξ) +

ε
2 )1[τ∗,σ [ and Ȳ can only jump downwards at σ . Indeed, on the set Bn, by means of (3.15), (3.13), and (3.14) holds

Ȳσn− = E g
τ∗(ξ) + ε

2
= E g

τ∗(ξ) − Ê g
σn

(ξ) + Ê g
σn

(ξ) + ε

2

≥ −ε

8
+ Ê g

σn
(ξ) + ε

2
≥ Ỹ n

σn
− ε

8
+ ε

8
= Ỹ n

σn
= Ȳσn .
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Consequently,

Ȳs −
∫ t

s

gu(Ȳu, Z̄u)du +
∫ t

s

Z̄u dWu

≥ Ȳ(σ∨s)∧t −
∫ t

(σ∨s)∧t

gu(Ȳu, Z̄u)du +
∫ t

(σ∨s)∧t

Z̄u dWu ≥ Ȳt , (3.21)

where the second inequality in (3.21) follows from ((Ỹ n, Z̃n)) ⊂ A(ξ, g) and Proposition 3.2.
Step 5: The maximal element (YM,ZM). By Zorn’s lemma, there exists a maximal element (YM,ZM) in A(ξ, g)

with respect to the preorder (3.8), satisfying, without loss of generality, YM
T = ξ . Finally, by showing that the corre-

sponding stopping time satisfies τM = T , we obtain a supersolution (YM,ZM) satisfying ‖YM − E g(ξ)‖R∞ ≤ ε, due
to the definition of τM in analogy to (3.9). Thus, choosing YM = Y ε in (3.7) finishes our proof.

But on {τM < T } we consider the chain consisting only of (YM,ZM) and, analogously to (3.15) and (3.16),
construct an upper bound (Ȳ , Z̄), with corresponding stopping time τ(Ȳ ) as in (3.9), satisfying P [τ(Ȳ ) > τM |τM <

T ] = 1. This yields P [τM < T ] ≤ P [τ(Ȳ ) > τM ] = 0, due to the maximality of τM . Hence we deduce that τM = T .
�

The techniques used in the proof of Theorem 3.5 show that A(ξ, g) exhibits a certain closedness under monotone
limits of decreasing supersolutions.

Theorem 3.6. Let g be a generator satisfying (LSC), (POS) and (NOR) and ξ ∈ L0(FT ) a terminal condition such that
ξ− ∈ L1(FT ). Let furthermore ((Y n,Zn)) be a decreasing sequence within A(ξ, g) with pointwise limit Ŷt := limn Y n

t ,
for t ∈ [0, T ]. Then Ŷ is a supermartingale and it holds

Ŷt ≥ Yt := lim
s↓t

s∈Q

Ŷs for all t ∈ [0, T ).

Moreover, with YT := ξ , there is a sequence ((Ỹ n, Z̃n)) ⊂ A(ξ, g) such that limn ‖Ỹ n − Y‖R∞ = 0, and a unique
control Z ∈ L such that (Y,Z) ∈ A(ξ, g).

Proof. The proof is a straightforward adaptation of the proof of Theorem 3.5. �

Now we focus on the question whether it is possible to find a minimal supersolution within A(ξ, g), the associated
control process Z of which belongs to L1, and

∫
Z dW therefore constitutes a true martingale instead of only a

supermartingale. To this end, we consider the following subset of A(ξ, g)

A1(ξ, g) := {
(Y,Z) ∈ A(ξ, g): Z ∈ L1}. (3.22)

By imposing stronger assumptions on the terminal condition ξ , the next theorem yields the existence of a unique
minimal supersolution in A1(ξ, g).

Theorem 3.7. Assume that the generator g satisfies (LSC), (POS) and (NOR), and let ξ ∈ L0(FT ) be a terminal
condition such that (E[ξ−|F·])∗ ∈ L1(FT ). If A1(ξ, g) �= ∅, then there exists a control Ẑ such that (E g(ξ), Ẑ) is the
unique minimal supersolution in A1(ξ, g).

Proof. A1(ξ, g) �= ∅ yields that A(ξ, g) �= ∅, because A1(ξ, g) ⊆ A(ξ, g). Also, from (E[ξ−|F·])∗T ∈ L1(FT ) we
deduce that ξ− ∈ L1(FT ). Hence, Theorem 3.5 yields the existence of an unique control Ẑ such that (E g(ξ), Ẑ) ∈
A(ξ, g). Verifying that Ẑ ∈ L1 is done as in [7], Theorem 4.5. �
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3.3. Relaxations of the conditions (NOR) and (POS)

In this section, we discuss possible relaxations of the conditions (NOR) and (POS) imposed on the generator throughout
Sections 3.1 and 3.2.

First, we want to replace (NOR) by the weaker assumption (NOR′). We say that a generator g satisfies

(NOR′) if, for all τ ∈ T , there exists some stopping time δ > τ such that the stochastic differential equation

dys = −gs(ys,0)ds, yτ = E g
τ (ξ) + ε

2
(3.23)

admits a solution on [τ, δ] where we set gt (y,0) = 0, for all y ∈ R and t > T .

Remark 3.8. It is possible to relax the condition (NOR′) further by requiring that the stochastic differential inequality
dys ≥ −gs(ys,0)ds with initial value yτ = E g

τ (ξ) + ε
2 has a càdlàg solution y on [τ, δ).

By this we obtain the following extension of Theorem 3.5.

Theorem 3.9. Let g be a generator satisfying (LSC), (POS) and (NOR′) and ξ ∈ L0(FT ) a terminal condition such
that ξ− ∈ L1(FT ). If A(ξ, g) �= ∅, then there exists a unique control process Ẑ ∈ L such that (E g(ξ), Ẑ) ∈ A(ξ, g).

Proof. The proof is almost the same as the proof of Theorem 3.5. The only difference lies in the definition of Ȳ in
(3.15). After τ ∗, instead of extending by a constant function, we concatenate the value process at τ ∗ with the solution
of the SDE (3.23), started at yτ∗ = E g

τ∗(ξ) + ε
2 and denoted by y. We emphasize that the zero control is maintained.

We only need to adjust the argumentation in Step 4c. To that end, we introduce the stopping time

κ := inf

{
t > τ ∗:

∫ t

τ∗
gs(ys,0)ds >

ε

8

}
∧ δ, (3.24)

and use κ̄ := κ ∧ τ̄ , with τ̄ as in (3.11), within the definition of the sequence (σn) in analogy to (3.12), that is,
σn = σ̂n ∧ κ̄ , for all n ∈ N. As before, we set σ := ∑

n≥1 1Bnσn. Consequently, Ȳ is given by

Ȳ =
∑
m≥1

Ym1[τm−1,τm[ + 1{τ∗<T }
∑
n≥1

1Bn

(
E g

τ∗(ξ) + ε

2
−

∫ ·

τ∗
gs(ys,0)ds

)
1[τ∗,σn[

+ 1{τ∗<T }
∑
n≥1

1BnỸ
n1[σn,T [, ȲT = ξ.

The definition of the stopping time τ̄ implies that, on the set Bn, we have Ȳt ≤ E g
t (ξ) + ε, for all t ∈ [τ ∗, σn[. Indeed,

observe that, for t ∈ [τ ∗, σn[,

Ȳt = E g
τ∗(ξ) + ε

2
−

∫ t

τ∗
gs(ys,0)ds ≤ E g

t (ξ) + ε

2
+ ε

2
= E g

t (ξ) + ε.

Furthermore, on the set Bn, by means of (3.13), (3.24), and (3.14),

Ȳσn− = E g
τ∗(ξ) + ε

2
−

∫ σn

τ∗
gs(ys,0)ds

= E g
τ∗(ξ) − Ê g

σn
(ξ) + Ê g

σn
(ξ) + ε

2
−

∫ σn

τ∗
gs(ys,0)ds

≥ 3ε

8
+ Ê g

σn
(ξ) −

∫ σn

τ∗
gs(ys,0)ds ≥ 2ε

8
+ Ê g

σn
(ξ) ≥ Ȳσn .

Hence, pasting at the stopping time σ is in accordance with Proposition 3.2. This yields the result. �
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As in [7], the positivity assumption (POS) on the generator can be relaxed to a linear lower bound, which, however,
has to be consistent with the assumption (NOR′). In the following a generator g is said to be

(LB-NOR′) linearly bounded from below under (NOR′), if there exist adapted measurable processes a and b with
values in R1×d and R, respectively, such that g(y, z) ≥ azT − b, for all (y, z) ∈ R × R1×d , and

dP a

dP
= E

(∫
a dW

)
T

(3.25)

defines an equivalent probability measure P a . Furthermore,
∫ t

0 bs ds ∈ L1(P a) holds for all t ∈ [0, T ],
and a and b are such that the positive generator defined by

ḡ(y, z) := g

(
y +

∫ ·

0
bs ds, z

)
− azT − b for all (y, z) ∈ R × R1×d, (3.26)

satisfies (NOR′).

An (LB-NOR′) setting can always be reduced to a setting with generator satisfying (POS) and (NOR′), by using the
change of measure (3.25) and ḡ defined in (3.26). Hence, Lemma 3.1 and Proposition 3.2, which strongly rely on the
property (POS), can be applied. However, we need a slightly different definition of admissibility than before. A control
process Z is said to be a-admissible, if

∫
Z dWa is a P a-supermartingale, where Wa = W − ∫

a ds is a P a-Brownian
motion by Girsanov’s theorem.

The set Aa(ξ, g) := {(Y,Z) ∈ S × L: Z is a-admissible and (3.1) holds}, as well as the process

Ê g,a
t (ξ) = ess inf

{
Yt ∈ L0(Ft ): (Y,Z) ∈ Aa(ξ, g)

}
for t ∈ [0, T ],

are defined analogously to (3.3) and (3.4), respectively. We are now ready to state our most general result, which
follows from Theorem 3.9 and [7], Theorem 4.17.

Theorem 3.10. Let g be a generator satisfying (LSC) and (LB-NOR′) and ξ ∈ L0(FT ) a terminal condition such that
ξ− ∈ L1(P a). If in addition Aa(ξ, g) �= ∅, then

E g,a
t (ξ) := lim

s↓t,s∈Q
Ê g,a

s (ξ) for all t ∈ [0, T ) and E g,a
T (ξ) := ξ

is the value process of the unique minimal supersolution, that is, there exists a unique control process Ẑ such that
(E g,a(ξ), Ẑ) ∈ Aa(ξ, g).

3.4. Continuous local martingales and controls in L1

Under stronger integrability conditions, the techniques used in the proof of Theorem 3.5 can be generalized to the case
where the Brownian motion W appearing in the stochastic integral in (3.1) is replaced by a d-dimensional continuous
local martingale M . Let us assume that M is adapted to a filtration (Ft )t≥0, which satisfies the usual conditions
and in which all martingales are continuous and all stopping times are predictable. We consider controls within the
set L1 := L1(M), consisting of all R1×d -valued, progressively measurable processes Z, such that

∫
Z dM ∈ H1. As

before, for Z ∈ L1 the stochastic integral
∫

Z dM is well defined and is by means of the Burkholder–Davis–Gundy
inequality a continuous martingale. A pair (Y,Z) ∈ S × L1 is now called a supersolution of a BSDE, if it satisfies, for
0 ≤ s ≤ t ≤ T ,

Ys −
∫ t

s

gu(Yu,Zu)d〈M〉u +
∫ t

s

Zu dMu ≥ Yt and YT ≥ ξ (3.27)

for a generator g and a terminal condition ξ ∈ L0(FT ). We will focus on the set

AM,1(ξ, g) := {
(Y,Z) ∈ S × L1: (Y,Z) satisfy (3.27)

}
.
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If we assume AM,1(ξ, g) to be nonempty, Theorem 3.5 combined with compactness results for sequences of H1-
bounded martingales given in [4] yields that

E g
t (ξ) := lim

s↓t,s∈Q
Ê g

s (ξ) for all t ∈ [0, T ) and E g
T (ξ) := ξ,

where

Ê g
t (ξ) := ess inf

{
Yt ∈ L0(Ft ): (Y,Z) ∈ AM,1(ξ, g)

}
, t ∈ [0, T ],

is the value process of the unique minimal supersolution within AM,1(ξ, g). Note that Lemma 3.1 and Proposition 3.2
extend to the case where W is substituted by M .

Theorem 3.11. Assume that the generator g satisfies (LSC), (POS) and (NOR) and let ξ ∈ L0(FT ) be a termi-
nal condition such that (E[ξ−|F·])∗ ∈ L1(FT ). If AM,1(ξ, g) �= ∅, then there exists a unique control Ẑ such that
(E g(ξ), Ẑ) ∈ AM,1(ξ, g).

Proof. By assumption, there is some (Y b,Zb) ∈ AM,1(ξ, g) and we consider, without loss of generality, only those
pairs (Y,Z) ∈ AM,1(ξ, g) satisfying Y ≤ Yb , obtained by suitable pasting as in Proposition 3.2. Using the techniques
of the proof of Theorem 3.5, we can find a sequence ((Y n,Zn)) ⊂ AM,1(ξ, g) satisfying limn ‖Yn − E g(ξ)‖R∞ = 0,
in analogy to (3.6). Since (

∫
Zn dM) is uniformly bounded in H1, compare [7], Theorem 4.5, it follows from [2],

Theorem 1, that E g(ξ) is a special semimartingale with canonical decomposition E g(ξ) = E g

0 (ξ) + N − A and that

lim
n→∞

∥∥∥∥
∫

Zn dM − N

∥∥∥∥
H1

= 0. (3.28)

Moreover, N ∈ H1. Now [4], Theorem 1.6, yields the existence of some Ẑ ∈ L1 such that N = ∫
Ẑ dM . By means of

(3.28), (Zn) converges, up to a subsequence, P ⊗ d〈M〉t -almost everywhere to Ẑ and limn

∫ t

0 Zn dM = ∫ t

0 Ẑ dM , for
all t ∈ [0, T ], P -almost surely, by means of the Burkholder–Davis–Gundy inequality. In particular, limn→∞ Zn(ω) =
Ẑ(ω), d〈M〉-almost everywhere, for almost all ω ∈ Ω . Verifying that (E g(ξ), Ẑ) satisfy (3.27) is now done analo-
gously to Step 1 in the proof of Theorem 3.5, and hence we are done. �
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