Nous commençons par caractériser les fonctions propres croissantes, au sens strict, de la famille d'opérateurs intégro-différentiels (0.1), pour tout α>0, γ≥0, f une function définie sur
We first characterize the increasing eigenfunctions associated to the following family of integro-differential operators, for any α, x>0, γ≥0 and f a smooth function on
Mots-clés : infinite divisibility, first passage time, self-similar Markov processes, special functions
@article{AIHPB_2009__45_3_667_0, author = {Pierre, Patie}, title = {Infinite divisibility of solutions to some self-similar integro-differential equations and exponential functionals of {L\'evy} processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {667--684}, publisher = {Gauthier-Villars}, volume = {45}, number = {3}, year = {2009}, doi = {10.1214/08-AIHP182}, mrnumber = {2548498}, zbl = {1180.31010}, language = {en}, url = {https://www.numdam.org/articles/10.1214/08-AIHP182/} }
TY - JOUR AU - Pierre, Patie TI - Infinite divisibility of solutions to some self-similar integro-differential equations and exponential functionals of Lévy processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2009 SP - 667 EP - 684 VL - 45 IS - 3 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/08-AIHP182/ DO - 10.1214/08-AIHP182 LA - en ID - AIHPB_2009__45_3_667_0 ER -
%0 Journal Article %A Pierre, Patie %T Infinite divisibility of solutions to some self-similar integro-differential equations and exponential functionals of Lévy processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2009 %P 667-684 %V 45 %N 3 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/08-AIHP182/ %R 10.1214/08-AIHP182 %G en %F AIHPB_2009__45_3_667_0
Pierre, Patie. Infinite divisibility of solutions to some self-similar integro-differential equations and exponential functionals of Lévy processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) no. 3, pp. 667-684. doi : 10.1214/08-AIHP182. https://www.numdam.org/articles/10.1214/08-AIHP182/
[1] A propos d'une note de M. Pierre Humbert. C. R. Math. Acad. Sci. Paris 236 (1953) 2031-2032. | MR | Zbl
.[2] A class of Markov processes which admit a local time. Ann. Probab. 15 (1987) 241-262. | MR | Zbl
and .[3] Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. | MR | Zbl
.[4] The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes. Potential Anal. 17 (2002) 389-400. | MR | Zbl
and .[5] On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes. Ann. Fac. Sci. Toulouse Math. 11 (2002) 19-32. | Numdam | MR | Zbl
and .[6] Exponential functionals of Lévy processes. Probab. Surv. 2 (2005) 191-212. | MR
and .[7] Variations sur une formule de Paul Lévy. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987) 359-377. | Numdam | MR | Zbl
and .[8] On construction of Markov processes. Z. Wahrsch. Verw. Gebiete 63 (1983) 433-444. | MR | Zbl
.[9] Sur les fonctionnelles exponentielles de certains processus de Lévy. Stoch. Stoch. Rep. 47 (1994) 71-101. (English version in [38], p. 139-171.) | MR | Zbl
, and .[10] Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes. Ann. Probab. 34 (2006) 1012-1034. | MR | Zbl
and .[11] First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103 (1962) 434-450. | MR | Zbl
and .[12] Markov Processes I, II. Die Grundlehren der Mathematischen Wissenschaften, Bände 121 122. Academic Press, New York, 1965. | MR | Zbl
.[13] Higher Transcendental Functions 3. McGraw-Hill, New York, 1955. | MR | Zbl
, , and .[14] An Introduction to Probability Theory and Its Applications 2, 2nd edition. Wiley, New York, 1971. | Zbl
.[15] The Theory of Stochastic Processes II. Springer, Berlin, 1975. | MR | Zbl
and .[16] Completely monotone families of solutions of n-th order linear differential equations and infinitely divisible distributions. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV-III (1976) 267-287. | EuDML | Numdam | MR | Zbl
.[17] “Normal”“Normal” distribution functions on spheres and the modified Bessel functions. Ann. Probab. 2 (1974) 593-607. | MR | Zbl
and .[18] Quelques résultats relatifs à la fonction de Mittag-Leffler. C. R. Math. Acad. Sci. Paris 236 (1953) 1467-1468. | MR | Zbl
.[19] Self-similar processes with independent increments associated with Lévy and Bessel processes. Stochastic Process. Appl. 100 (2002) 223-232. | MR | Zbl
, and .[20] Some probabilistic properties of Bessel functions. Ann. Probab. 6 (1978) 760-770. | MR | Zbl
.[21] Differential equations of fractional orders: Methods, results and problems. Appl. Anal. 78 (2001) 153-192. | MR | Zbl
and .[22] On solution of integral equations of Abel-Volterra type. Differential Integral Equations 8 (1995) 993-1011. | MR | Zbl
and .[23] Semi-stable Markov processes. Z. Wahrsch. Verw. Gebiete 22 (1972) 205-225. | MR | Zbl
.[24] Special Functions and Their Applications. Dover, New York, 1972. | MR | Zbl
.[25] Wiener's random functions, and other Laplacian random functions. In Proc. Sec. Berkeley Symp. Math. Statist. Probab., 1950 II. 171-187. California Univ. Press, Berkeley, 1951. | MR | Zbl
.[26] Tail asymptotics for exponential functionals of Lévy processes. Stochastic Process. Appl. 116 (2006) 156-177. | MR | Zbl
and .[27] Processus à accroissements indépendants et positifs. Séminaire de probabilités de Strasbourg 3 (1969) 175-189. | EuDML | Numdam | MR | Zbl
.[28] Sur la nouvelle function Eα(x). C. R. Math. Acad. Sci. Paris 137 (1903) 554-558. | JFM
.[29] Exponential functional of one-sided Lévy processes and self-similar continuous state branching processes with immigration. Bull. Sci. Math. In press, 2008. | MR | Zbl
.[30] Bessel processes and infinitely divisible laws. In Stochastic Integrals (In Proc. Sympos. Univ. Durham, Durham, 1980) 285-370. D. Williams (ed.). Lecture Notes in Math. 851. Springer, Berlin, 1981. | MR | Zbl
and .[31] Recurrent extensions of self-similar Markov processes and Cramér's condition. Bernoulli 11 (2005) 471-509. | MR | Zbl
.[32] Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press, Cambridge, 1999. | MR | Zbl
.[33] Infinite divisibility of probability distributions on the real line. Monographs and Textbooks in Pure and Applied Mathematics 259. Marcel Dekker Inc., New York, 2004. | MR | Zbl
and .[34] Itô excursion theory for self-similar Markov processes. Ann. Probab. 22 (1994) 546-565. | MR | Zbl
.[35] On the unimodality of L functions. Ann. Math. Stat. 42 (1971) 912-918. | MR | Zbl
.[36] On a continuous analogue of the stochastic difference equation Xn=ρXn−1+Bn. Stochastic Process. Appl. 12 (1982) 301-312. | MR | Zbl
.[37] Loi de l'indice du lacet brownien et distribution de Hartman-Watson. Z. Wahrsch. Verw. Gebiete 53 (1980) 71-95. | MR | Zbl
.[38] Exponential Functionals of Brownian Motion and Related Processes. Springer, Berlin, 2001. | MR | Zbl
.Cité par Sources :