Completely monotone families of solutions of n-th order linear differential equations and infinitely divisible distributions
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 3 (1976) no. 2, pp. 267-287.
@article{ASNSP_1976_4_3_2_267_0,
     author = {Hartman, Philip},
     title = {Completely monotone families of solutions of $n$-th order linear differential equations and infinitely divisible distributions},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {267--287},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 3},
     number = {2},
     year = {1976},
     mrnumber = {404760},
     zbl = {0386.34016},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1976_4_3_2_267_0/}
}
TY  - JOUR
AU  - Hartman, Philip
TI  - Completely monotone families of solutions of $n$-th order linear differential equations and infinitely divisible distributions
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1976
SP  - 267
EP  - 287
VL  - 3
IS  - 2
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_1976_4_3_2_267_0/
LA  - en
ID  - ASNSP_1976_4_3_2_267_0
ER  - 
%0 Journal Article
%A Hartman, Philip
%T Completely monotone families of solutions of $n$-th order linear differential equations and infinitely divisible distributions
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1976
%P 267-287
%V 3
%N 2
%I Scuola normale superiore
%U http://www.numdam.org/item/ASNSP_1976_4_3_2_267_0/
%G en
%F ASNSP_1976_4_3_2_267_0
Hartman, Philip. Completely monotone families of solutions of $n$-th order linear differential equations and infinitely divisible distributions. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 3 (1976) no. 2, pp. 267-287. http://www.numdam.org/item/ASNSP_1976_4_3_2_267_0/

[1] E.S. Či, A theorem on a differential inequality for multi-point boundary value problems, Izv. Vysš. Učebn. Zaved. Matematika, 2 (27) (1962), pp. 170-179 (Russian). | MR

[2] W.A. Coppel, Disconjugacy, Lecture Notes in Mathematics, No. 220, Springer, 1971. | MR | Zbl

[3] J.L. Doob, Stochastic Processes, Wiley, New York, 1953. | MR | Zbl

[4] A. ERDELYI (editor), Higher Transcendental Functions, vol. 1, McGraw-Hill, New York, 1953. | Zbl

[5] P. Hartman, Ordinary Differential Equations, Baltimore, 1973. | MR | Zbl

[6] P. Hartman, Unrestricted n-parameter families, Rend. Circ. Mat. Palermo (2), 7 (1958), pp. 123-142. | MR | Zbl

[7] P. Hartman, Principal solutions of disconjugate n-th order linear differential equations, Amer. J. Math., 91 (1969), pp. 306-362; 93 (1971), pp. 439-451. | MR | Zbl

[8] P. Hartman, On N-parameter families and interpolation problems for nonlinear ordinary differential equations, Trans. Amer. Math. Soc., 154 (1971), pp. 201-226. | MR | Zbl

[9] P. Hartman - G.S. Watson, « Normal » distribution functions on spheres and the modified Bessel functions, Ann. Prob., 2 (1974), pp. 593-607. | MR | Zbl

[10] A. Yu. Levin, Some problems bearing on the oscillation of solutions of linear differential equations, Dokl. Akad. Nauk SSSR, 148 (1963), pp. 512-515; Soviet Math. Dokl., 4 (1963), pp. 121-124. | MR | Zbl

[11] A. Yu. Levin, Nonoscillation of solutions of the equation x(n) +p1(t)x(n-1)+...= 0, Uspechi Mat. Nauk, 24 (1969), No. 2 (1946), pp. 43-96; Russian Math. Surveys, 24 (1969), pp. 43-99. | MR | Zbl

[12] H P. Mckean Jr., Elementary solutions for certain parabolic partial differential equations, Trans. Amer. Math. Soc., 82 (1950), pp. 519-548. | MR | Zbl

[13] Z. Opial, On a theorem of O. Arama, J. Differential Equations, 3 (1967), pp. 88-91. | MR | Zbl

[14] Ju V. Pokorny Some estimates of the Green's functions o f a multipoint boundary value problem, Mat. Zametki, 4 (1968), pp. 533-540 (Russian). | MR

[15] G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge, 1958. | Zbl

[16] D. Widder, The Laplace Transform, Princeton, 1941. | MR | Zbl