Nous étudions les principes de grandes déviations pour
We study large deviations principles for
Mots-clés : large deviations, large systems of random processes with symmetrised initial-terminal conditions, Feynman-Kac formula, Bose-Einstein statistics, non-commutative Varadhan lemma, quantum spin systems, Donsker-Varadhan function
@article{AIHPB_2008__44_5_837_0, author = {Adams, Stefan and Dorlas, Tony}, title = {Asymptotic {Feynman-Kac} formulae for large symmetrised systems of random walks}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {837--875}, publisher = {Gauthier-Villars}, volume = {44}, number = {5}, year = {2008}, doi = {10.1214/07-AIHP132}, mrnumber = {2453847}, zbl = {1186.60020}, language = {en}, url = {https://www.numdam.org/articles/10.1214/07-AIHP132/} }
TY - JOUR AU - Adams, Stefan AU - Dorlas, Tony TI - Asymptotic Feynman-Kac formulae for large symmetrised systems of random walks JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 837 EP - 875 VL - 44 IS - 5 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/07-AIHP132/ DO - 10.1214/07-AIHP132 LA - en ID - AIHPB_2008__44_5_837_0 ER -
%0 Journal Article %A Adams, Stefan %A Dorlas, Tony %T Asymptotic Feynman-Kac formulae for large symmetrised systems of random walks %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 837-875 %V 44 %N 5 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/07-AIHP132/ %R 10.1214/07-AIHP132 %G en %F AIHPB_2008__44_5_837_0
Adams, Stefan; Dorlas, Tony. Asymptotic Feynman-Kac formulae for large symmetrised systems of random walks. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 5, pp. 837-875. doi : 10.1214/07-AIHP132. https://www.numdam.org/articles/10.1214/07-AIHP132/
[1] Complete equivalence of the Gibbs ensembles for one-dimensional Markov systems. J. Statist. Phys. 105 (2001) 879-908. | MR | Zbl
.[2] Large deviations for empirical path measures in cycles of integer partitions, preprint. Available at arXiV:math.PR/0702053, 2007.
.[3] Interacting Brownian bridges and probabilistic interpretation of Bose-Einstein condensation, Habilitation thesis, University of Leipzig, 2008.
.[4] Large deviations for trapped interacting Brownian particles and paths. Ann. Probab. 34 (2006) 1340-1422. | MR | Zbl
, and .[5] Large systems of path-repellent Brownian motions in a trap at positive temperature. Electron. J. Probab. 11 (2006) 460-485. | MR | Zbl
, and .[6] Large deviations for many Brownian bridges with symmetrised initial-terminal condition. Probab. Theory Related Fields 142 (2008) 79-124. | MR | Zbl
and .[7] Limit theorems for statistics of combinatorial partitions with applications to mean field Bose gas. J. Math. Phys. 46 (2005) 033303. | MR | Zbl
, , and .[8] The free energy of quantum spin systems and large deviations. Comm. Math. Phys. 118 (1988) 337-354. | MR | Zbl
, and .[9] Multilevel large deviations and interacting diffusions. Probab. Theory Related Fields 98 (1994) 423-487. | MR | Zbl
and .[10] A non-commutative central limit theorem. J. Math. Phys. 37 (1996) 4662-4682. | MR | Zbl
.[11] Probabilistic derivation of a noncommutative version of Varadhan's Theorem. Proceedings of the Royal Irish Academy, 2007. To appear. | MR | Zbl
.[12] Large Deviations. AMS Chelsea Publishing, Amer. Math. Soc., 2001.
and .[13] Asymptotic evaluation of certain Markov process expectations for large time, I-IV. Comm. Pure Appl. Math. 28 (1975) 1-47, 279-301, 29 (1979) 389-461, 36 (1983) 183-212. | Zbl
and .[14] Large deviations for exchangeable random vectors. Ann. Probab. 20 (1992) 1147-1166. | MR | Zbl
and .[15] Large Deviations Techniques and Applications, 2nd edition. Springer, New York, Berlin, 1998. | MR | Zbl
and .[16] Atomic theory of the λ transition in Helium. Phys. Rev. 91 (1953) 1291-1301. | Zbl
.[17] Random fields and diffusion processes. Ecole d'Eté de Saint Flour XV-XVII 101-203. Lecture Notes in Math. 1362. Springer, 1988. | MR | Zbl
.[18] Some applications of functional integration in statistical mechanics, and field theory. C. de Witt and R. Storaeds (Eds). Gordon and Breach, New York, 1970.
.[19] Large Deviations. Amer. Math. Soc., Providence, RI, 2000. | MR | Zbl
.[20] Foundations of Modern Probability. Springer, New York, 2001. | MR | Zbl
.[21] The Mathematics of the Bose Gas and Its Condensation. Birkhäuser, Basel, 2005. | MR | Zbl
, , and .[22] Asymptotics of Varadhan-type and the Gibbs variational principle. Comm. Math. Phys. 121 (1989) 271-282. | MR | Zbl
, and .[23] Probability Measures on Metric Spaces. Academic Press, New York, 1967. | MR | Zbl
.[24] Continuous Martingales and Brownian Motion. Springer, Berlin, 1999. | MR | Zbl
and .[25] Über die Umkehrung der Naturgesetze. Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl. 1931 (1931) 144-153. | Zbl
.[26] Non-negative Matrices and Markov Chains. Springer, New York, 1981. | MR | Zbl
.[27] Percolation transition in the Bose gas: II. J. Phys. A: Math. Gen. 35 (2002) 6995-7002. | MR | Zbl
.[28] Phase transition in an interacting bose system. An application of the theory of Ventsel' and Freidlin, J. Statist. Phys. 61 (1990) 749-764. | MR
.[29] Large deviations for a triangular array of exchangeable random variables. Ann. Inst. H. Poincaré Probab. Statist. 35 (2002) 649-680. | EuDML | Numdam | MR | Zbl
.Cité par Sources :