
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2008, Vol. 44, No. 5, 837–875
DOI: 10.1214/07-AIHP132
© Association des Publications de l’Institut Henri Poincaré, 2008

Asymptotic Feynman–Kac formulae for large symmetrised
systems of random walks1

Stefan Adamsa and Tony Dorlasb

aMax-Planck Institute for Mathematics in the Sciences, Inselstraße 22-26, D-04103 Leipzig, Germany and Dublin Institute for Advanced Studies,
School of Theoretical Physics, 10, Burlington Road, Dublin 4, Ireland. E-mail: adams@mis.mpg.de

bDublin Institute for Advanced Studies, School of Theoretical Physics, 10, Burlington Road, Dublin 4, Ireland. E-mail: dorlas@stp.dias.ie

Received 11 October 2006; accepted 1 May 2007

Abstract. We study large deviations principles for N random processes on the lattice Z
d with finite time horizon [0, β] under

a symmetrised measure where all initial and terminal points are uniformly averaged over random permutations. That is, given a
permutation σ of N elements and a vector (x1, . . . , xN ) of N initial points we let the random processes terminate in the points
(xσ(1), . . . , xσ(N)) and then sum over all possible permutations and initial points, weighted with an initial distribution. We prove
level-two large deviations principles for the mean of empirical path measures, for the mean of paths and for the mean of occupation
local times under this symmetrised measure. The symmetrised measure cannot be written as a product of single random process
distributions. We show a couple of important applications of these results in quantum statistical mechanics using the Feynman–
Kac formulae representing traces of certain trace class operators. In particular we prove a non-commutative Varadhan lemma for
quantum spin systems with Bose–Einstein statistics and mean field interactions.

A special case of our large deviations principle for the mean of occupation local times of N simple random walks has the
Donsker–Varadhan rate function as the rate function for the limit N → ∞ but for finite time β. We give an interpretation in
quantum statistical mechanics for this surprising result.

Résumé. Nous étudions les principes de grandes déviations pour N processus aléatoires sur réseaux Z
d pour des temps [0, β] finis

et sous la condition que la mesure correspondante soit symétrisée, c’est-à-dire que tous les points initiaux et finaux soient unifor-
mément moyennés par rapport aux perturbations aléatoires. Plus précisément, cela signifie que, pour toute permutation σ de N élé-
ments et pour tout vecteur (x1, . . . , xN ) de N points initiaux, le processus aléatoire peut se terminer aux points (xσ(1), . . . , xσ(N))

et nous sommons donc ensuite sur toutes les permutations possibles ainsi que sur tous les points initiaux avec, pour poids res-
pectif, une distribution initiale. Nous démontrons le principe de grandes déviations de niveau deux pour la valeur moyenne de la
mesure des chemins empiriques, pour la valeur moyenne des chemins, ainsi que pour la valeur moyenne de la mesure empirique
sur l’espace des chemins via la mesure symétrisée. Nous donnons également quelques applications de ces résultats en mécanique
statistique quantique via la formule de Feynman–Kac représentant la trace de certains opérateurs. En particulier, nous montrons
un lemme de Varadhan non commutatif pour des syst èmes de spins quantiques définis via la statistique de Bose–Einstein et avec
une interaction de champ moyen. Un cas spécial de notre principe de grandes déviations pour la valeur moyenne des temps locaux
d’occupation de N marches aléatoires montre que la fonction de taux est celle de Donsker–Varadhan dans la limite N → ∞ mais
pour un temps β fini. Nous donnons une interprétation en mécanique statistique quantique de ce résultat surprenant.
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1. Introduction

Consider N random processes in continuous time on the lattice Z
d with an initial distribution given by a probability

measure m ∈ P(Zd), where P(Zd) denotes the set of probability measures on Z
d . We fix the time horizon as [0, β].

In this paper we study large deviations for different functionals of the N random processes for large N under the
symmetrised distribution

P
(sym)

N = 1

N !
∑

σ∈SN

∑
x1∈Zd

· · ·
∑

xN∈Zd

N⊗
i=1

m(xi)P
β
xi ,xσ(i)

. (1.1)

Here SN is the set of all permutations of N elements and the measure P
β
xi ,xσ(i)

is defined for any σ ∈ SN and
xi ∈ Z

d,1 ≤ i ≤ N, as the conditional probability measure for the ith random process starting at xi with terminal
location xσ(i).

Thus, in (1.1) we have two mechanisms. First we draw uniformly a permutation from the set of all permutations
of N elements, and then we pick N initial points which are permuted according to the chosen permutation to obtain
N terminal points. These N initial and terminal points determine N random processes which are averaged over
all permutations and all initial points weighted by the given initial distribution m. We prove three level-two large
deviations principles for the symmetrised distribution P

(sym)

N . The symmetrised measure P
(sym)

N itself is of interest for
the following reasons.

The symmetrisation in (1.1) is described by the set of N pairs (x1, . . . , xN ;xσ(1), . . . , xσ(N)) for any permutation
σ ∈ SN and any x ∈ Z

d . The mixing procedure for the second entry in these pairs has been studied in [14] and [29],
which were both motivated by asymptotic questions about exchangeable vectors of random variables. [14] is a study
of large deviations for the empirical measures 1

N

∑N
i=1 δYi

, where Y1, . . . , YN are i.i.d. with distribution
∫
Θ

μ(dθ)P
(θ)
N

for some distribution μ on some compact space Θ , and the empirical measures are assumed to satisfy a large devi-
ations principle under P

(θ)
N for each θ . In [29], a similar problem is studied: given a sequence of random vectors

(Y
(N)
1 , . . . , Y

(N)
N ) such that the empirical measures 1

N

∑N
i=1 δ

Y
(N)
i

satisfy a large deviation principle, another principle

is established for the process of empirical measures 1
N

∑�tN�
i=1 δ

X
(N)
i

, where

(
X

(N)
1 , . . . ,X

(N)
N

) = 1

N !
∑

σ∈SN

(
Y

(N)
σ(1), . . . , Y

(N)
σ(N)

)
.

Here (X
(N)
i )1≤i≤N is an array of finite exchangeable random variables.

Our second main motivation for studying the symmetrised distribution P
(sym)

N stems from the application of
Feynman–Kac formulae to expressing thermodynamic functions in quantum statistical mechanics. These thermo-
dynamic functions are given as traces over exponentials of the Hamilton operator describing the quantum system.
There exist two kinds of elementary particles in nature, fermions and bosons. The state of a system of N bosons is
described by a symmetrisation procedure like in (1.1), whereas the state for fermions is given with the corresponding
anti-symmetrisation procedure. Thus one is lead to employ large deviations technique to study the large N -limit for
expectations with respect to the symmetrised distribution. We apply our main large deviation results in Section 2.2
and Section 2.3 to systems of bosons in quantum statistical mechanics.

We derive large deviations principles under the symmetrised distribution P
(sym)

N for the empirical path measure
LN , for the mean path YN and for the mean of occupation measures ZN , all defined as functions of the N random
paths ξ (1), . . . , ξ (N) : [0, β] → Z

d , which are elements of the space Dβ = D([0, β];Z
d) of functions ω : [0, β] → Z

d ,
which are right-continuous with left limits. The empirical path measures

LN = 1

N

N∑
i=1

δξ(i)
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are random elements in the set P(Dβ) of probability measures on Dβ , the mean path

YN = 1

N

N∑
i=1

ξ (i)

is a random element in Dβ([0, β];R
d) whereas the mean of the normalised occupation local times

ZN = 1

N

N∑
i=1

l
(i)
β ,

is a random probability measure on Z
d , where the normalised occupation local times are defined as

l
(i)
β (z) = 1

β

∫ β

0
1{ξ (i)

s =z} ds, i = 1, . . . ,N, z ∈ Z
d ,

which represent the fraction of the time the ith random process spends in the state z up to time β .
Our large-deviation rate functions for the three principles are explicit in terms of variational problems involving

an entropy term (describing the large deviations of the permutations) and a certain Legendre transform (describing
the large deviations of LN,YN and ZN , respectively, for a fixed permutation). These two parts in the variational
formula for the rate function are due to the level-two large deviations, which has something in common with the
multilevel large deviations studied in [9]. We draw a number of conclusions about variants of the principles, laws of
large numbers and asymptotic independence. Let us remark that all our large deviations results may be obtained for
random processes (Markovian or not) on any connected graph with finite or denumerable vertices.

A first application of our large deviations results is given in Section 2.2, where we use the Feynman–Kac formula
to represent the trace of any trace class operator restricted to the symmetric subspace of the N th tensor product of
n × n complex matrix algebras as an expectation with respect to a measure for N Markov processes on the index
set {1, . . . ,m}. The trace class operator here is given by the Boltzmann factor e−βh for any self-adjoint matrix h

representing in quantum mechanics the Hamilton operator for a system of N quantum spins (lattice systems) for the
inverse temperature β , i.e. the time horizon of our random processes is given by the inverse temperature. In particular
we derive the thermodynamic limit of the free energy, which is the trace of the Boltzmann factor, for a general
class of mean-field interactions and thus we get a non-commutative version of Varadhan’s lemma with Bose–Einstein
statistics, i.e. where the trace is restricted to the symmetric subspace. Here, an analysis of the variational formula for
the rate function is achieved with L2 techniques for the mean paths, which are embedded in the corresponding L2

space. Non-commutative Varadhan lemmas have been studied in [8] and [22]. In [10] a non-commutative central limit
theorem under Bose–Einstein statistics has been proved for the case n = 2. Hence our results complement and extend
these results.

Our results are most striking if we consider N simple random walks on Z
d conditioned to stay within a finite

set Λ and replace the initial probability distribution m by the counting measure in Λ. The rate function for the
large deviations principle for the mean of occupation local times of the N random walks under the symmetrised
measure μ

(sym)

Λ,N (2.19) is then given by the well-known Donsker–Varadhan rate function. The latter governs the large
deviations principle for the occupation local time of a single random walk but for the limit β → ∞. This remarkable
result has an interpretation for the cycle-structure given by our symmetrisation procedure, i.e. the appearance of cycles
whose lengths grow like some power of N . The existence of long cycles is in some cases an order parameter for the
occurrence of the Bose–Einstein condensation (BEC), a quantum phase transition solely driven by the symmetrisation
procedure [7]. Details of this interpretation are given at the end of Section 2.3.

We consider this as a first step towards a rigorous understanding of large boson systems at positive temperature β ,
because the time horizon β represents the inverse temperature for the Feynman–Kac formulae. Future work will be
devoted to the mutually interacting case. Interacting Brownian motions in trap potentials have so far been analysed
without symmetrisation, in particular for vanishing temperature in [4], and for large systems of interacting Brown-
ian motions at fixed positive temperature in [5]. In [6] some results for Brownian motions under the symmetrised
distribution are obtained, which are not so general and which cannot be applied to mean field models.
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The work [2] analyses the cycle structure for path measures for the large N -limit with respect to the Lebesgue
measure on boxes which grow with N such that the quotient has a finite limit. In the present article we are informed
by Schrödinger [25] who considered the question of how any two spatial points are connected by random paths. The
crucial observation is that this aspect of the problem can be described by pair measures. However, as [2] shows, the
time dimension is important for the cycle structure, and hence future work [3] will be devoted to combining the cycle
analysis with the pair measure approach in space–time.

Let us make some remarks on related literature. As mentioned, the work [25] by Schrödinger is related to the pair
probability method we applied in our large deviations principle. In [25] Schrödinger raised the question of the most
probable behaviour of a large system of diffusing particles in thermal equilibrium. Föllmer [17] gave a mathematical
formulation of these ideas in terms of large deviations. He applied Sanov’s theorem to obtain a large deviations princi-
ple for LN when B(1),B(2), . . . , are i.i.d. Brownian motions with initial distribution m and no condition at time β . The
rate function is the relative entropy with respect to

∫
Rd m(dx)Px ◦ B−1, where the motions start in x under Px . Then

Schrödinger’s question amounts to identifying the minimiser of that rate function under given fixed independent initial
and final distributions. It turns out that the unique minimiser is of the form

∫
Rd

∫
Rd dx dy f (x)g(y)P

β
x,y ◦ B−1, i.e. a

Brownian bridge with independent initial and final distributions. The probability densities f and g are characterised
by a pair of dual variational equations, which originally appeared in [25] for the special case that both the initial and
the final measures are Lebesgue measure.

An important work combining combinatorics and large deviations for symmetrised measures is [28]. Tóth con-
siders N continuous-time simple random walks on a complete graph with ρN vertices, where ρ ∈ (0,1) is fixed. He
considered the symmetrised distribution as in (1.1) and adds an exclusion constraint: there is no collision of any two
particles during the time interval [0, β]. The combinatorial structure of this model enabled him to express the free
energy in terms of a cleverly chosen Markov process on N0. Using Freidlin–Wentzell theory, he derived an explicit
formula for the large-N asymptotic of the free energy; in particular he obtained a phase-transition, the so-called Bose–
Einstein condensation, for large β and sufficiently large ρ. Tóth’s work partly inspired our approach, and in future
work we will address the question of how to apply our results to this setting as well as how large deviations relate
to the appearance of long cycles. Large deviations for integer partitions and cycle structures, where the random walk
bridges with a different time horizon are weighted, are obtained in [2].

The structure of the paper is as follows. In Section 2 we present all our main results. In Section 2.1 we describe our
main large deviation results together with a couple of remarks. An application to general quantum spin models and
to a non-commutative version of Varadhan’s lemma is given in Section 2.2. In Section 2.3 we study the special case
of simple random walks on a finite set and in Section 2.4 we provide some basic facts about the space Dβ and large
deviations theory. Section 3 is devoted to the proofs of our main results. In the Appendix we prove a lemma on pair
probability measures and an entropy estimation which we use in our proofs.

2. The results

In this section we are going to formulate our main results. In Section 2.1 we present the large deviations results and
some important conclusions. Following in Section 2.2 we apply this to a non-commutative version of Varadhan’s
lemma and give an application of our large deviations result for quantum spin models and in Section 2.3 we study
the very important case when for finite time the large time rate function, the Donsker–Varadhan rate function, is the
rate function for the large N -limit under the symmetrised distribution. At the end in Section 2.4 we provide some
preliminaries about the topology in Dβ and some notations on large deviations theory.

2.1. Large deviations for symmetrised distributions

We fix throughout the paper β > 0. The space Dβ with the Skorokhod metric is Polish [12]. Our main aim is to encode
the combinatorics for the sum over permutations for the symmetrised measure (1.1) with a sum over pair probability
measures with equal marginals. In order to formulate the large deviations results we introduce the following notations.
By P(Zd × Z

d) we denote the set of pair probability measures on Z
d × Z

d and we let

P̃
(
Z

d × Z
d
) = {

Q ∈ P
(
Z

d × Z
d
)

:Q(1) = Q(2)
}
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be the set of pair probability measures on Z
d × Z

d with equal first and second marginal, respectively Q(1)(x) =∑
y∈Zd Q(x, y), x ∈ Z

d , and Q(2)(y) = ∑
x∈Zd Q(x, y), y ∈ Z

d . The relative entropy of the pair probability measure

Q ∈ P(Zd × Z
d) with respect to the product Q(1) ⊗ m is given by

H
(
Q|Q(1) ⊗ m

) =
∑

x,y∈Zd

Q(x, y) log
Q(x,y)

Q(1)(x)m(y)
.

Note that Q 
→ H(Q|Q(1) ⊗ m) is strictly convex. All the rate functions of our large deviations principles include
this relative entropy of pair probability measures as the part coming from the combinatorics of the symmetrised
measure P

(sym)

N . The other part of the rate functions is coming from large deviations principles for a product of not
necessarily identically distributed objects. Thus the encoding of the sum over permutations with a sum over pair
probability measures represents a certain two-level large deviations principle. This is seen in the definition (1.1) of the
symmetrised measure P

(sym)

N , where permutations are sampled uniformly and for each permutation there is a product
of not necessarily identical distributions of single random walks with initial and terminal condition.

On the level of path measures we define the following functional on the space of probability measures on the set
Dβ of path as

I
(sym)

β (μ) = inf
Q∈P̃(Zd×Zd )

{
H

(
Q|Q(1) ⊗ m

) + I
(Q)
β (μ)

}
for μ ∈ P(Dβ), (2.1)

where the functional I
(Q)
β is given by

I
(Q)
β (μ) = sup

F∈Cb(Dβ)

{
〈F,μ〉 −

∑
x,y∈Zd

Q(x, y) log E
β
x,y

(
e〈F,δξ 〉)} for μ ∈ P(Dβ), (2.2)

where we write ξ for ξ (1) and 〈F, δξ 〉 = ∫
Dβ

F (ω)δξ (dω) = F(ξ), and where Cb(Dβ) is the space of continuous

and bounded functions on Dβ . Clearly, I
(Q)
β is a Legendre–Fenchel transform, but not one of a logarithmic moment

generating function of a random variable, hence there seems to be no way to represent this functional as the relative
entropy of μ with respect to any measure. I

(Q)
β and I

(sym)

β are nonnegative, and I
(Q)
β is convex as a supremum of

linear functions.
Let πs :Dβ → R

d be the projection πs(ω) = ωs for any s ∈ [0, β] and ω ∈ Dβ . We denote the marginal measure
of μ ∈ P(Dβ) on Z

d by μs = μ ◦ π−1
s ∈ P(Zd), and analogously we write μ0,β = μ ◦ (π0,πβ)−1 ∈ P(Zd × Z

d) for
the joint distribution of the initial and the terminal point of a random process with distribution μ. If we restrict the
supremum in (2.2) over all F ∈ Cb(Dβ) to all functions of the form ω 
→ g(ω0,ωβ) with g ∈ Cb(R

d × R
d), we see

that Q = μ0,β if I
(Q)
β (μ) < ∞. Indeed,

sup
g∈Cb(R

d×Rd )

{ ∑
x,y∈Zd

g(x, y)
(
μ0,β(x, y) − Q(x,y)

)}

= sup
g∈Cb(R

d×Rd )

{ ∑
x,y∈Zd

g(x, y)μ0,β(x, y) −
∑

x,y∈Zd

Q(x, y) log Ex,y

(
eg(ξ0,ξβ )

)}

≤ I
(Q)
β (μ) < ∞,

which implies that μ0,β = Q. Therefore the infimum in (2.1) is uniquely attained at this pair probability measure Q,
i.e.

I
(sym)

β (μ) =
{

H(μ0,β |μ0 ⊗ m) + supF∈Cb(Dβ)

〈
μ,F − log E

β
π0,πβ

(
eF(ξ)

)〉
if μ0 = μβ ,

+∞ otherwise.
(2.3)

In particular, I
(sym)

β is convex.
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Theorem 2.1 (LDP for the mean of path measures LN ). Under the symmetrised measure P
(sym)

N the empirical path

measures (LN)N≥1 satisfy a large deviations principle on P(Dβ) with speed N and rate function I
(sym)

β .

The proof of Theorem 2.1 is in Section 3.1. The proof does not rely on any Markov property of the N random
processes, hence this assumption can be dropped.

We also have a large deviations principle for the mean path level. Note that any mean path is an element in the
space Dβ([0, β];R

d) due to the averaging of paths with values in the lattice Z
d . For the path level we consider the

continuous embedding of the space D([0, β];R
d) into L2([0, β];R

d) (see [10], Lemma 2.3, for details). The scalar
product for the latter space is defined by

〈ξ,ω〉 =
∫ β

0
ds

〈
ξ(s),ω(s)

〉
Rd (2.4)

for ξ,ω : [0, β] → R
d , where 〈·, ·〉Rd is the scalar product on R

d . In the following we also write ξs for ξ(s). We define
the following functional on L2([0, β];R

d) as

Ĩ
(sym)

β (ω) = inf
Q∈P̃(Zd×Zd )

{
H

(
Q|Q(1) ⊗ m

) + Ĩ
(Q)
β (ω)

}
for ω ∈ L2([0, β];R

d
)
,

where

Ĩ
(Q)
β (ω) = sup

f ∈L2([0,β];Rd )

{
〈f,ω〉 −

∑
x,y∈Zd

Q(x, y) log E
β
x,y

(
e〈ω,ξ〉)} for ω ∈ L2([0, β];R

d
)
.

Then the large deviations principle for the mean path reads as.

Theorem 2.2 (LDP for the mean of paths YN ). Under the symmetrised measure P
(sym)

N the mean (YN)N≥1 of the

paths satisfies a large deviations principle on L2([0, β];R
d) with speed N and rate function Ĩ

(sym)

β .

The proof of Theorem 2.2 is in Section 3.2. The contraction principle ([15], Theorem 4.2.1) yields a large deviations
principle for the mean path from the one for the mean of path measures. However, the identification of that rate function
from the contraction principle with the one in Theorem 2.2 seems to be a rather difficult task from a technical point
of view. Luckily, our proof of Theorem 2.1 is so general that it can be slightly modified to give the proof for the large
deviations principle for the mean path. For details see Section 3.2.

Denote by B(Zd) all bounded function f : Zd → R. On the level of probability measures on Z
d we define the

functional J
(sym)

β on the set P(Zd) of probability measures on Z
d as

J
(sym)

β (p) = inf
Q∈P̃(Zd×Zd )

{
H

(
Q|Q(1) ⊗ m

) + J
(Q)
β (p)

}
for p ∈ P

(
Z

d
)
,

where

J
(Q)
β (p) = sup

f ∈B(Zd )

{
β

∑
x∈Zd

f (x)p(x) −
∑

x,y∈Zd

Q(x, y) log E
β
x,y

(
eβ〈f,lβ 〉)}.

Theorem 2.3 (LDP for the mean of normalised occupation local times ZN ). Under the symmetrised measure
P

(sym)

N the mean (ZN)N≥1 of the normalised occupation measures satisfy a large deviations principle on P(Zd) with

speed N and rate function J
(sym)

β .

The proof of Theorem 2.3 is in Section 3.3. Here, the same remarks as for the proof of Theorem 2.2 concerning the
contraction principle apply. For details see Section 3.3.

In the following remark we compare the symmetrised distribution with the i.i.d. case.
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Remark 2.4. For i.i.d. random walks with initial distribution m, the empirical path measure (LN)N≥1 satisfies a
large deviations principle with speed N and rate function

Iβ,m(μ) = sup
F∈Cb(Dβ)

{
〈F,μ〉 − log

∑
x,y∈Zd

m(x)Eβ
x,x

(
eF(ξ)

)}
.

This is an application of Cramer’s theorem [15], Theorem 6.1.3, for the mean of the independent identically
distributed random walks with initial distribution m. Note that I

(Q)
β ≥ Iβ,m for the pair measure Q defined as

Q(x,y) = m(x)δx(y) for x, y ∈ Z
d , since

−
∑

x,y∈Zd

Q(x, y) log E
β
x,y

(
eF(ξ)

) ≥ − log
∑

x,y∈Zd

m(x)Eβ
x,x

(
E

β
ξ0,ξβ

(
eF(ξ)

))
= − log

∑
x,y∈Zd

m(x)Eβ
x,x

(
eF(ξ)

)
.

In particular I
(sym)

β ≥ Iβ .

Our large deviations Theorems 2.1–2.3 may be extended by considering a finite and positive measure m not neces-
sarily normalised to one. However, more interesting is the question if we replace the conditional probability measure
P

β
x,y by the measure μ

β
x,y(·) = P

β
x (·1{ξβ = y}) for any x, y ∈ Z

d . This is included in the following proposition.

Proposition 2.5. Let m be a positive finite measure on Z
d and let g : Rd × R

d → R+ be a bounded and continuous
strictly positive function. Replace P

β
x,y by g(x, y)P

β
x,y in the definition of the symmetrised measure P

(sym)

N in (1.1).
Then:

(i) Theorem 2.1 remains true with the rate function replaced by

μ 
→ I
(sym)

β (μ) −
∑

x,y∈Zd

μ0,β(x, y) logg(x, y).

(ii) Theorem 2.2 remains true with the rate function replaced by

ω 
→ inf
Q∈P̃(Zd×Zd )

{
H

(
Q|Q(1) ⊗ m

) + Ĩ
(Q)
β (ω) −

∑
x,y∈Zd

Q(x, y) logg(x, y)

}
.

(iii) Theorem 2.3 remains true with the rate function replaced by

p 
→ inf
Q∈P̃(Zd×Zd )

{
H

(
Q|Q(1) ⊗ m

) + J
(Q)
β (p) −

∑
x,y∈Zd

Q(x, y) logg(x, y)

}
.

Proof. We will prove (i). Define the function Fg(ω) = logg(ω0,ωβ) for any path ω ∈ Dβ([0, β];Z
d). Then with

probability one with respect to
⊗N

i=1 P
β
xi ,xσ(i)

,

N∏
i=1

g(xi, xσ(i)) = exp

(
N∑

i=1

logg
(
ξ

(i)
0 , ξ

(i)
β

)) = exp
(
N〈LN,Fg〉

)
.

Clearly, ω 
→ Fg(ω) is continuous and bounded. Hence the large deviations principle follows from [19], Theo-

rem III.17, for any Q ∈ P̃(Zd × Z
d). The rate function follows as μ 
→ I

(sym)

β (μ) − 〈μ,Fg〉 which together with
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(2.3) gives the proof. The proof of (ii) and (iii) follows analogously with (i) and the proofs of Theorem 2.2 and
Theorem 2.3 respectively. Note for (ii) that

ω 
→ inf
μ∈P(Dβ) : Ψ (μ)=ω

{
I

(sym)

β (μ) − 〈μ0,β , logg〉}
= inf

Q∈P̃(Zd×Zd )

{
Ĩ

(sym)

β (ω) −
∑

x,y∈Zd

Q(x, y) logg(x, y)

}
for ω ∈ L2([0, β];Z

d
)
,

where Ψ :P(Dβ) → D([0, β];R
d) is the continuous mapping for the contraction principle; compare the proof of

Theorem 2.2 in Section 3.2. Note that we used the fact that Q = μ0,β if I
(Q)
β (μ) < ∞. �

From the previous proposition we get the following proposition.

Proposition 2.6. Let m be a positive finite measure on Z
d and let g : Rd × R

d → R+ be a bounded and continuous
strictly positive function.

(i)

lim
N→∞

1

N
log

(
1

N !
∑

σ∈SN

∑
xi∈Zd ,1≤i≤N

N∏
i=1

m(xi)

N∏
i=1

g(xi, xσ(i))

)

= − inf
Q∈P̃(Zd×Zd )

{
H

(
Q|Q(1) ⊗ m

) −
∑

x,y∈Zd

Q(x, y) logg(x, y)

}
. (2.5)

(ii) The unique minimiser of the rate function μ 
→ I
(sym)

β (μ) − ∑
x,y∈Zd μ0,β(x, y) logg(x, y) is given by

μ0 =
∑

x,y∈Zd

Q0(x, y)Pβ
x,y ◦ ξ−1,

where Q0 ∈ P̃(Zd × Z
d) is the unique minimiser on the right-hand side of (2.5). Under the symmetrised measure

P
(sym)

N the sequence (LN)N∈N converges in distribution to the measure μ0 as N → ∞.

Proof. (i) Proposition 2.5 gives that the left-hand side of (2.5) equals − infμ∈P(Dβ) I
(ysm)

β (μ) − 〈μ0,β , logg〉. If we
use (2.3) and substitute Q = μ0,β we get

− inf
Q∈P̃(Zd×Zd )

{
H

(
Q|Q(1) ⊗ m

) −
∑

x,y∈Zd

Q(x, y) logg(x, y)

+ inf
μ∈P(Dβ): Q=μ0,β

sup
F∈Cb(Dβ)

{〈
μ,F − log E

β
π0,πβ

(
eF(ξ)

)〉}}
.

The latter infimum over μ is equal to zero. To see this, pick F = 0 to get the lower bound. To get the corresponding
upper bound take μ = ∑

x,y∈Zd Q(x, y)P
β
x,y ◦ ξ−1 and use Jensen’s inequality to get

−〈
μ, log E

β
π0,πβ

(
eF(ξ)

)〉 ≤ −
∑

x,y∈Zd

Q(x, y)Eβ
x,y(F ).

We are going to prove that μ0 is the unique minimiser of the rate function μ 
→ I
(sym)

β (μ) − ∑
x,y∈Zd μ0,β(x, y) ×

logg(x, y). This proves then both (ii) and (iii). For that, let μ ∈ P(Dβ) be a zero of I
(sym)

β . As the relative entropy



Symmetrisation for large systems of random walks 845

has compact level sets, there is a Q0 ∈ P̃(Zd × Z
d) that minimises the formula on the right-hand side of (2.5). As

I
(Q0)
β (μ) < ∞, we have μ0,β = Q0 and hence

0 = I
(Q0)
β (μ) = sup

F∈Cb(Dβ)

{〈
μ,F − log E

β
π0,πβ

(
eF(ξ)

)〉}
.

Clearly, F = 0 is optimal and the Euler–Lagrange equations yield, for any g ∈ Cb(Dβ),

〈μ,g〉 = 〈
μ,E

β
π0,πβ

(
h(ξ)

)〉
,

which identifies μ as μ0. �

2.2. Non-commutative Varadhan’s lemma with Bose–Einstein statistics

In this section we use our large deviations principle for the mean paths under the symmetrised distribution P
(sym)

N to
derive a non-commutative version of Varadhan’s lemma with Bose–Einstein statistics. Let h be a self-adjoint n × n

matrix with hx,y ≤ 0 for all x �= y, x, y ∈ G = {1, . . . , n}. We define a Markov process on the finite index set G with
transition probabilities

P
(
ξ(t + δt) = y

∣∣ξ(t) = x
) =

{−hy,xδt if y �= x,

1 + ∑
z �=x hz,xδt if y = x, (2.6)

analogously

pt−s(x, y) = P
(
ξ
(
t ′
) = y

∣∣ξ(s) = x
) = (

e−(t−s)̃h
)
y,x

for x, y ∈ G,

where the matrix h̃ is defined by h̃y,x = hy,x for y �= x and h̃x,x = −∑
z �=x hz,x . For later convenience we let

λ : [−n,n] → R be a continuous function such that λ(x) = λx for x ∈ G, and we denote by hD a continuous function
hD(x) = h̃x,x − hx,x for each x ∈ G.

We let N Markov processes ξ (1), . . . , ξ (N) with transition probabilities (2.6) and time horizon [0, β] be given. Let

P
β,h
x,y denote the conditional probability measure with density e

∫ β
0 hD(ω(s))ds starting in x ∈ G conditioned to terminate

in y ∈ G. We write E
β,h
x,y for the expectation with respect to the bridge probability measure P

β,h
x,y .

We derive a large deviations principle for the mean path YN under the symmetrised distribution (compare (1.1))

P
(sym,h)

N = 1

N !
∑

σ∈SN

∑
x1∈G

· · ·
∑

xN∈G

N⊗
i=1

m(xi)P
β,h
xi ,xσ(i)

,

where the initial distribution m is defined by m(x) = 1
m

for x ∈ G.
We consider mean-field type interactions for the N Markov processes ξ (1), . . . , ξ (N) of the form N ×∫ β

0 f ( 1
N

∑N
i=1 ξ

(i)
s )ds for some bounded continuous function f : R → R. In the following we write E

(sym,h)

N for
the expectation with respect to the symmetrised distribution.

Theorem 2.7. Fix β > 0 and n ∈ N. Let h be a self-adjoint n × n-matrix with hx,y ≤ 0 for x �= y for all x, y ∈ G.

(a) The mean paths, YN , under the symmetrised distribution P
(sym,h)

N satisfy, as N → ∞, a large deviations principle

on L2([0, β];R) with rate function I
(sym,h)

β defined by

I
(sym,h)

β (ω) = inf
Q∈P̃(G×G)

{
H

(
Q|Q(1) ⊗ m

) + I
(Q,h)
β (ω)

}
,
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for ω ∈ L2([0, β];R), where

I
(Q,h)
β (ω) = sup

g∈L2([0,β];R)

{
〈g,ω〉 −

∑
x,y∈G

Q(x,y) log E
β,h
x,y

(
e
∫ β

0 g(s)ξ(s)ds
)}

.

(b)

lim
N→∞

1

N
log E

(sym,h)

N

(
eN

∫ β
0 f ((1/N)

∑N
i=1 ξ

(i)
s )ds

) = sup
ω∈L2([0,β];R)

{∫ β

0
f
(
ω(s)

)
ds − I

(sym,h)

β (ω)

}
. (2.7)

Proof. (a) is a direct application of our main Theorem 2.2, and (b) is an application of Varadhan’s lemma [15],
Theorem 4.3.1. �

We outline how this large deviations principle gives a non-commutative version of Varadhan’s lemma under Bose–
Einstein statistics. Let ρ be the state on the algebra M of all complex n × n matrices given by ρ(A) = Tr(e−βhA)

for A ∈ M for the given matrix h, and let Tr e−βh = 1. We fix a self-adjoint element x ∈ M and some continuous
bounded function f : R → R. This self-adjoint element x describes a mean-field interaction expressed through the
mean matrix

x(N) = 1

N

N∑
i=1

xi,

where xi, i = 1, . . . ,N , is a copy of the matrix x. Further, let h(N) = 1
N

∑N
i=1 hi , where hi, i = 1, . . . ,N , is a copy of

the matrix h. Hence h(N) and x(N) both act on the N th tensor product of the n-dimensional single variable space. The
symbol Tr+ denotes the trace restricted to the subspace of all symmetric N -variables with respect to any permutation
of their single indices. The restriction to these symmetric variables is called Bose–Einstein statistics.

We shall calculate the trace via the Feynman–Kac formula and our previous results in Theorem 2.7. For this we
need the path measure

μβ,h
x,y (·) = P

β,h
x

(· e
∫ β

0 hD(ω(s))ds1{ξβ = y}),
which is the probability for the Markov process to start in x ∈ G and to terminate in y ∈ G. Note that this measure can

be normalised with the function gβ(x, y) = P
β,h
x (e

∫ β
0 hD(ω(s))ds1{ξβ = y}) to obtain the conditional probability mea-

sure P
β,h
x,y . Here we apply our Proposition 2.5 in combination with Theorem 2.7. Note that this results in substituting

the symmetrised distribution P
(sym,h)

N,β with the symmetrised measure

μ
(sym,h)

N = 1

N !
∑

σ∈SN

∑
x1∈Λ

· · ·
∑

xN∈Λ

N⊗
i=1

μβ,h
xi ,xσ(i)

. (2.8)

The Feynman–Kac formula gives

lim
N→∞

1

N
log Tr+

(
e−N(h(N)−f (x(N)))

) = lim
N→∞

1

N
logμ

(sym,h)

N,β

(
eN

∫ β
0 f ((1/N)

∑N
i=1 ξ

(i)
s )ds

)
= sup

ω∈L2([0,β];R)

{∫ β

0
f
(
ω(s)

)
ds − I

(sym,h)

β (ω) + 〈Q,gβ〉
}
, (2.9)

where we replaced m in Theorem 2.7 by the counting measure Cou, and where 〈Q,gβ〉 denotes the expectation of gβ

with respect to the pair probability measure Q.
The analysis of the variational formula of the right-hand side of (2.9) gives the following theorem.
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Theorem 2.8 (Mean-field interaction with Bose–Einstein statistics).

lim
N→∞

1

N
log Tr+

(
e−N(h(N)−f (x(N)))

) = sup
ω∈L2([0,β];R)

{∫ β

0
f
(
ω(s)

)
ds − I

(sym,h)

β (ω) + 〈Q,gβ〉
}

= β sup
u∈R

inf
Q∈P̃(G×G)

{
f (u) − I

(Q,h)
β (u) − H

(
Q|Q(1) ⊗ Cou

)}
, (2.10)

where

I
(Q,h)
β (u) = sup

a∈R

{
au −

∑
x,y∈G

Q(x,y) log E
β,h
x

(
ea

∫ β
0 ξ(s)ds1{ξβ = y})} for u ∈ R.

Trace formulas like (2.9) and (2.10) go back to the work of Cegla, Lewis and Raggio [8] in which the authors use a
combination of large deviations theory and group representation to derive a variational formula for the free energy of
mean-field quantum spin systems. Inspired by their work, Petz, Raggio and Verbeure [22] derived a non-commutative
version of Varadhan’s theorem using C∗-algebraic methods. We thus have in our Theorem 2.7 and Theorem 2.8 derived
a non-commutative version of Varadhan’s lemma and hence a variational formula for the free energy of mean-field
quantum spin systems under symmetrised distributions, i.e. a version with Bose–Einstein statistics.

Proof of Theorem 2.8. The proof follows from Theorem 2.7 and (2.10) and the analysis of the variational problems,
which is done in the following Lemma 2.9 and Proposition 2.10.

�

Lemma 2.9. Let Q ∈ P̃(G × G). If ω ∈ L2([0, β];R) is a constant function then the supremum in

sup
g∈L2([0,β];R)

{
〈g,ω〉 −

∑
x,y∈G

Q(x,y) log E
β,h
x

(
e
∫ β

0 g(s)ξ(s)ds1{ξβ = y})}
is attained at a constant function g.

Proof. Fix any Q ∈ P̃(G × G). Clearly

g 
→
∑

x,y∈G

Q(x,y) log E
β,h
x

(
e
∫ β

0 g(s)ξ(s)ds1{ξβ = y})
is as a convex combination of logarithmic moment generating functions convex and continuous. We introduce the
Haar basis {hi}i≥0 for L2([0, β];R) consisting of the functions hi defined by h0(s) = 1 for s ∈ [0, β] and if 2m ≤ i ≤
2m+1 − 1,

hi(s) =
⎧⎨⎩2m/2 if β

(
i2−m − 1

) ≤ s < β
((

i + 1
2

)
2−m − 1

)
,

−2m/2 if β
((

i + 1
2

)
2−m − 1

) ≤ s ≤ β
(
(i + 1)2−m − 1

)
,

0 otherwise.

Now for every ε > 0 there is a m ∈ N and a function g in the space Hm spanned by the basis functions

h0, h1, . . . , h2m−1 such that I
(Q,h)
β (ω) < 〈g,ω〉 − ∑

x,y∈G Q(x,y) log E
β,h
x (e

∫ β
0 g(s)ξ(s)ds1{ξβ = y}) + ε. If ω(s) = u

for all s ∈ [0, β] we get the Euler–Lagrange equations for the finite-dimensional variational problem as

u =
∑

x,y∈Zd

Q(x, y)
E

β
x (〈h0, ξ 〉e〈g,ξ〉1{ξβ = y})

E
β
x (e〈g,ξ〉1{ξβ = y})

,

0 =
∑

x,y∈Zd

Q(x, y)
E

β
x (〈hi, ξ 〉e〈g,ξ〉1{ξβ = y})

E
β
x (e〈g,ξ〉1{ξβ = y})

for 1 ≤ i ≤ 2m − 1. (2.11)
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We observe that

∑
x,y∈Zd

Q(x, y)
E

β
x (· e〈g,ξ〉1{ξβ = y})

E
β
x (e〈g,ξ〉1{ξβ = y})

is symmetric if the function g is constant. This is easily seen by

∑
x,y∈Zd

Q(x, y)
E

β
x (· e〈g,ξ〉1{ξβ = y})

E
β
x (e〈g,ξ〉)

≤ ∑
x,y∈Zd

E
β
x (· e〈g,ξ〉1{ξβ = y})

E
β
x (e〈g,ξ〉1{ξβ = y})

and a complementary lower bound with minx,y∈Λ Q(x,y) > 0 (indices x and y with Q(x,y) = 0 do not contribute at
all). Hence, the equations in (2.11) for 1 ≤ i ≤ 2m − 1 are trivially solved for any constant function g. The constant is
determined through the first equation of (2.11). �

Proposition 2.10. The supremum in the variational formula (2.7) with the mean-field energy f is attained at a con-
stant function ω(s) = u ∈ R for all s ∈ [0, β].

Proof. We split the proof into two steps. In the second step we will show that

I
(sym,h)

β (ω) ≥
∫ β

0
I

(sym,h)

β (ω̂s)ds, (2.12)

where ω̂s(t) = ω(s), t ∈ [0, β], is the constant function with value ω(s).
Step 1. From (2.12) we get

−
∫ β

0
f
(
ω(s)

)
ds + I

(sym,h)

β (ω) ≥
∫ β

0

(−f
(
ω(s)

) + I
(sym,h)

β (ω̂s)
)

ds

≥ β inf
u∈R

{−f (u) + I
(sym,h)

β (̂u)
}
,

and hence

sup
ω∈L2([0,β];R)

{∫ β

0
f
(
ω(s)

)
ds − I

(sym,h)

β (ω)

}
≤ β sup

u∈R

{
f (u) − I

(sym,h)

β (̂u)
}
.

Step 2. We now prove (2.12). We only need to show that

I
(Q)
β (ω) ≥

∫ β

0
I

(Q)
β (ω̂s)ds (2.13)

for any Q ∈ P̃(Γ 2). We fix Q ∈ P̃(Γ 2). For any u ∈ R we get from Lemma 2.9 that

I
(Q)
β (u) = sup

a∈R

{
au −

∑
x,y∈G

Q(x,y) log E
β,h
x

(
ea

∫ β
0 ξ(s)ds1{ξβ = y})}.

The function
∑

x,y∈G Q(x,y) log E
β,h
x (ea

∫ β
0 ξ(s)ds1{ξβ = y}) is clearly convex and infinitely differentiable with in-

creasing first derivative. From this we conclude that there exists, for any ε > 0, a function g ∈ L∞([0, β];R) such
that

I
(Q)
β (ω̂t ) < g(t)ω(t) −

∑
x,y∈G

Q(x,y) log E
β,h
x

(
eĝt

∫ β
0 ξ(s)ds1{ξβ = y}) + ε for a.e. t ∈ [0, β]. (2.14)
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As g ∈ L2([0, β]; [0,m]) we get the lower bound

I
(Q)
β (ω) ≥ 〈g,ω〉 −

∑
x,y∈G

Q(x,y) log E
β,h
x

(
e
∫ β

0 g(s)ξ(s)ds1{ξβ = y}).
Therefore we are finished with our proof if we show that

E
β,h
x

(
e
∫ β

0 g(s)ξ(s)ds1{ξβ = y}) ≤
∫ β

0
E

β,h
x

(
eg̃t

∫ β
0 ξ(s)ds1{ξβ = y})dt. (2.15)

By continuity, we may assume that g ∈ Hm for some m ∈ N. Then g can be written as g = ∑2m

k=1〈hk, g〉1{[β(k −
1)2−m,βk2−m]}. Hence, we need to show that

E
β,h
x

(
e
∫ β

0 g(s)ξ(s)ds1{ξβ = y}) ≤ 2−m
2m∑
k=1

E
β,h
x

(
e〈hk,g〉∫ β

0 ξ(s)ds1{ξβ = y}). (2.16)

But (2.16) is an application of the Hölder inequality for random walk expectations. Hence, (2.15) follows. Now, (2.15)
implies, together with (2.14) and the lower bound, the inequality (2.13), and finishes the proof. �

Example 2.11 (Quantum-spin-1/2 variables and telegraph process). We shall apply our results for the mean field
free energy in Theorem 2.10 to the quantum spin 1/2 model introduced in [10]. In [10] the non-commutative central
limit theorem for the following model was studied. We show in this example the extension to the non-commutative
Varadhan lemma to obtain the mean mean-field free energy. In the setting of Theorem 2.7 and Theorem 2.10 we
consider the set G = {−1,+1} of possible spin values and the following process on G with transition probabilities

P
(
ξ(t + δt) = y

∣∣ξ(t) = x
) =

{ 1
2δt if y �= x,
1 − 1

2δt if y = x,

equivalently

pt(x, y) = 1

2

(
1 + xye−t

)
, x, y ∈ G.

From Theorem 2.7 and Proposition 2.10 we get for this process and any continuous bounded function f : [−1,1] →
R the result

lim
N→∞

1

N
logμ

(sym,t)

N,β

(
e(1/N)

∑N
i=1 f (ξ(i))

) = sup
ω∈L2([0,β];R)

{∫ β

0
f
(
ω(s)

)
ds − I

(sym,t)

β (ω)

}
= sup

u∈R

{
f (u) − I

(sym,t)

β (u)
}
,

where

I
(sym,t)

β (u) = inf
Q∈P̃(G2)

{
H

(
Q|Q(1) ⊗ Cou

) + sup
a∈R

{
ua −

∑
x,y∈G

Q(x,y) log E
β
x

(
ea

∫ β
0 ξ(s)ds1{ξβ = y})}}. (2.17)

To analyse (2.17) we have to calculate the expectations E
β
x (ea

∫ β
0 ξ(s)ds1{ξβ = y}) for any x, y ∈ G. This can be

done by simple matrix calculations as follows.

E
β
x

(
ea

∫ β
0 ξ(s)ds1{ξβ = y}) = 〈

y
∣∣eβ(aσz−(1/2)(1−σx))

∣∣x〉, (2.18)

where

σz =
(

1 0
0 −1

)
and σx =

(
0 1
1 0

)
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are the two-dimensional Pauli matrices. The eigenvalues of the matrix (aσz − 1
2 (1 − σx)) are λ±1 = − 1

2 ±
√

1
4 + a2.

In principle, direct calculations of all the expectations in (2.18) lead to an evaluation of (2.17). The resulting mean
mean-field free energy is therefore given by

lim
N→∞

1

N
logμ

(sym,t)

N,β

(
e(1/N)

∑N
i=1 f (ξ(i))

) = β sup
u∈R

{
f (u) − 1

2

(
1 −

√
1 − u2

)}
,

compare [11]. As an alternative to the tedious calculations we immediately get a lower bound via the following
considerations. Let a ∈ R and let ua denote the eigenvector for the eigenvalue λ1 of the matrix (aσz − 1

2 (1 − σx)).
Then

M
(a)
β = ea

∫ β
0 ξ(s)dse−βλ1

ua(ξβ)

ua(ξ0)

defines a martingale for the telegraph process. We insert M
(a)
β in the expectation on the right hand side of (2.17) and

obtain

sup
a∈R

{
β(au − λ1) −

∑
x,y∈G

Q(x,y) log E
β
x

(
M

(a)
β 1{ξβ = y})}.

As Ex(M
(a)
β 1{ξβ = y}) is a probability measure for all x ∈ G due to the martingale property we can combine the

logarithm term with the one from the entropy to get

I
(sym,t)

β (u) = inf
Q∈P̃(G2)

{
β(au − λ1) +

∑
x,y∈G

Q(x,y) log
Q(x,y)

Q(1)Ex(M
(a)
β 1{ξβ = y})

}
.

Hence, as the relative entropy of probability measures is positive, we get as a lower the Legendre–Fenchel transform
of λ1, which is given by β 1

2 (1 − √
1 − u2).

2.3. A special case for the rate function

In this subsection we study a very important special case for the rate function for the mean of the normalised occu-
pation local times when our N random processes are simple random walks on Z

d whose generator is given by the
discrete Laplacian. This is motivated by the Feynman–Kac formula for traces of trace class operators. Hence, we let
Λ ⊂ Z

d be a finite box and we put m equal the counting measure CouΛ on Λ and we employ Dirichlet boundary
conditions for the discrete Laplacian. Instead of the symmetrised probability measure P

(sym)

N in (1.1) we consider the
symmetrised measure

μ
(sym)

Λ,N = 1

N !
∑

σ∈SN

∑
x1∈Λ

· · ·
∑

xN∈Λ

N⊗
i=1

μβ
xi,xσ(i)

. (2.19)

Proposition 2.5(iii) gives a large deviations principle for the mean of the normalised occupation local times under
the measure μ

(sym)

Λ,N , i.e. we have

lim
N→∞

1

N
log

(
μ

(sym)

Λ,N ◦ Z−1
N

) = − inf
p∈P(Zd )

J
(sym)

β,Λ (p),

where

J
(sym)

β,Λ (p) = inf
Q∈P̃(Zd×Zd )

{
H

(
Q|Q(1) ⊗ CouΛ

) + J
(Q)
β,Λ(p)

}
, p ∈ P

(
Z

d
)
, (2.20)
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with

J
(Q)
β,Λ(p) = sup

f ∈B(Zd )

{
β

∑
x∈Zd

f (x)p(x) −
∑

x,y∈Zd

Q(x, y) log Ex

(
e
∫ β

0 f (ξs)ds1{ξβ = y})}. (2.21)

Our goal is to identify the rate function in much easier and more familiar terms. It turns out that this rate function
is the Donsker–Varadhan rate function IΛ, defined as

IΛ(p) =
⎧⎨⎩

1
2

∑
x,y∈Λ :

|x−y|=1

(√
p(x) − √

p(y)
)2 if supp(p) ⊂ Λ,

+∞ otherwise,
(2.22)

where |x − y| = max1≤i≤d |xi − yi |, x, y ∈ Z
d , is the lattice distance. This is the rate function for the large deviations

principle for the normalised occupation local time lβ as β → ∞. More precisely, denote by ξ[0,β] the path of the ran-

dom walk and define the sub probability measure P
(β)
x = Px(·|supp(lβ) ⊂ Λ) = Px(·|ξ[0,β] ⊂ Λ). The the normalised

occupation local time satisfies as β → ∞ a large deviations principle on P(Λ) with speed β and rate function IΛ −CΛ

[13], where CΛ is just the normalisation infp∈P(Zd )
1
2

∑
x,y∈Λ :

|x−y|=1

(
√

p(x) − √
p(y))2 for the rate function.

The surprising result is that the rate function J
(sym)

β,Λ for finite β but for large N under the symmetrised measure
equals the Donsker–Varadhan rate function.

Theorem 2.12. Let Λ ⊂ Z
d be a finite set. Then J

(sym)

β,Λ (p) = βIΛ(p) for any p ∈ P(Zd) with supp(p) = Λ.

For the proof of the theorem we need the following lemma.

Lemma 2.13. Fix β ∈ (0,∞) and a finite set Λ ⊂ Z
d . Then, for all p ∈ P(Zd) having support in Λ,

J
(sym)

β,Λ (p) = inf
Q∈P̃(Zd×Zd )

{
H

(
Q|Q(1) ⊗ CouΛ

) + J
(Q)
β,Λ(p)

}
, (2.23)

where

J
(Q)
β,Λ(p) = sup

f ∈RΛ

{
β
∑
x∈Λ

f (x)p(x) −
∑

x,y∈Λ

Q(x,y) log Ex

(
e
∫ β

0 f (ξs)ds1{ξ[0,β] ⊂ Λ}1{ξβ = y})}.

Proof. Note that H(Q|Q(1) ⊗ CouΛ) = ∞ if the support of Q is not contained in Λ × Λ. Hence, in (2.20) we need
to take the infimum over pair probability measures Q only on the set P̃(Λ×Λ). From an inspection of the right-hand
side of (2.21) it follows that the function (vector) f in the supremum can be taken arbitrarily negative outside Λ to
approximate the supremum. Hence, we may add in the expectation the indicator on the event that the random walk
does not leave Λ by time β . But then the values of f outside Λ do not contribute. This shows that we need to consider
only functions f that are defined on Λ; in other words, (2.23) holds. �

Proof of Theorem 2.12. We proceed in two steps. First we show that J
(sym)

β,Λ (p) ≥ βIΛ(p) for any p ∈ P(Zd) with

support in Λ. In a second step we show the complementary inequality for any p ∈ P(Zd) with supp(p) = Λ. We start
from (2.23).

Denote by �Λ the restriction of the discrete Laplacian to the set Λ with zero boundary conditions, i.e. for any
f ∈ R

Λ,

�Λf (x) =
∑

y∈Λ :
|x−y|=1

[
f (x) − f (y)

]
, x ∈ Λ,f ∈ R

Z
d

, supp(f ) ⊂ Λ.
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For f ∈ l2(Λ) = R
Λ let uf be the unique positive eigenfunction for the operator �Λ + f for the eigenvalue λ(f )

given by

λΛ(f ) = sup
g∈l2(Λ): ‖g‖2=1

〈
(�Λ + f )g,g

〉
= − inf

g∈l2(Zd ):
supp(g)⊂Λ,‖g‖2=1

{
1

2

∑
x,y∈Zd :
|x−y|=1

(
g(x) − g(y)

)2 − 〈f,g〉2
}
. (2.24)

To check the positivity and uniqueness of the eigenfunction consider the operator �Λ + c1+f , which is non-negative
and irreducible for some c > 0. The theorem of Perron–Frobenius (see [26]) gives that �Λ + c1 + f has a unique
simple eigenvalue and that the corresponding eigenfunction is positive in Λ and unique up to constants. Clearly,
�Λ + c1 + f and �Λ + f have the same eigenfunction, and the corresponding eigenvalues differ by the constant c.
Hence, λ(f ) is simple and the eigenfunction uf is unique and positive.

We now introduce a martingale which permits a transformation of the random walk in the expectation of the
variational formula in (2.23). The expression

M
(f )
β := e

∫ β
0 f (ξs )dse−βλΛ(f )1{ξ[0,β] ⊂ Λ}uf (ξβ)

uf (ξ0)
(2.25)

defines a martingale (M
(f )
β )β≥0 under Px for any x ∈ Λ with respect to the canonical filtration (see the Markov process

variant of [24], Proposition VIII.3.1, or [20] for martingale theory for Markov processes).
We insert now M

(f )
β on the right-hand side of (2.23), obtain an extra βλΛ(f ) and use the marginal property of the

pair probability measure Q, which gives
∑

x,y Q(x, y) log
uf (y)

uf (x)
= 0. Thus we see that

J
(Q)
β,Λ(p) = sup

f ∈RΛ

{
β
(〈f,p〉 − λΛ(f )

) −
∑

x,y∈Λ

Q(x,y) log Ex

(
M

(f )
β 1{ξβ = y})},

where 〈f,p〉 = ∑
x∈Λ f (x)p(x) is the scalar product in Λ. Here Ex denotes expectation for the simple random walk

with generator � starting at x. Note that by the martingale property of (M
(f )
β )β≥0 the measure Ex(M

(f )
β 1{ξβ = · })

is a probability measure on Λ for any x ∈ Λ. Substituting this in (2.23) and recalling the definition of the relative
entropy of the pair measures, we obtain that

J
(sym)

β,Λ (p) = inf
Q∈P̃(Zd×Zd )

sup
f ∈RΛ

{
β
(〈f,p〉 − λΛ(f )

)
+

∑
x,y∈Λ

Q(x,y) log
Q(x,y)

Q(1)(x)Ex(M
(f )
β 1{ξβ = y})

}
. (2.26)

The double sum in (2.26) is, because Ex(M
(f )
β 1{ξβ = ·}) is a probability measure, an entropy between probability

measures and therefore nonnegative.
Therefore we get that

J
(sym)

Λ (p) ≥ β sup
f ∈RΛ

{〈f,p〉 − λΛ(f )
}
. (2.27)

Note that the map f 
→ λΛ(f ) is the Legendre–Fenchel transform of IΛ, as is seen from the Rayleigh–Ritz principle
in (2.24). According to the duality lemma [15], Lemma 4.5.8, the r.h.s. of (2.27) is therefore equal to βIΛ(p) since it is
equal to the Legendre–Fenchel transform of λΛ. Hence, we have shown that J

(sym)

Λ (p) ≥ βIΛ(p) for any p ∈ P(Zd)

with support in Λ.
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In our second step we prove the complementary inequality. For that we construct a pair probability measure to get
an upper for (2.26). The resulting upper bound is given by the supremum over any function f ∈ R

Λ. Thus we are left
to solve this variational problem for the upper bound. Let’s turn to the details.

For p ∈ P(Zd) with supp(p) = Λ define the function u ∈ R
Λ by u(x) = √

p(x) and the function f ∗ ∈ R
Λ by

f ∗(x) = −�Λu(x)

u(x)
for x ∈ Λ.

Then u = uf ∗ is the unique positive eigenfunction for the operator �Λ +f ∗ with eigenvalue λΛ(f ∗) = 0. Given these
objects we define the function Q∗ :Λ × Λ → [0,1] by

Q∗(x, y) = u(x)u(y)Ex

(
e
∫ β

0 f ∗(ξs )ds1{ξ[0,β] ⊂ Λ}1{ξβ = y}), x, y ∈ Λ.

This function is obviously symmetric and sums up to one. By the martingale property of (M
(f ∗)
β )β≥0 the first marginal

is identified as

Q∗(1)(x) = u(x)Ex

(
e
∫ β

0 f ∗(ξs )ds1{ξ[0,β] ⊂ Λ}u(ξβ)
) = u(x)2, x ∈ Λ.

Therefore Q∗ ∈ P̃(Λ × Λ), which gives the following upper bound for (2.26), when we apply the marginal property
of Q∗ and separate the eigenvalue in the definition of M

(f )
β . The marginal property gives

∑
x,y∈Λ

Q∗(x, y) log
u(x)u(y)

Q∗(1)(x)
= 0.

Hence

J
(sym)

β,Λ (p) ≤ sup
f ∈RΛ

{
β〈f,p〉 +

∑
x,y∈Λ

Q∗(x, y) log
Ex(e

∫ β
0 f ∗(ξs )ds1{ξ[0,β] ⊂ Λ}1{ξβ = y})

Ex(e
∫ β

0 f (ξs)ds1{ξ[0,β] ⊂ Λ}1{ξβ = y})

}
. (2.28)

We will show that the variational problem on the right-hand side of (2.28) is solved for f = f ∗. Due to the strict
concavity we need to get the solution for the Euler–Lagrange equation, which reads

β〈v,p〉 =
∑

x,y∈Λ

Q∗(x, y)
Ex((

∫ β

0 v(ξs)ds)e
∫ β

0 f (ξs )ds1{ξ[0,β] ⊂ Λ}1{ξβ = y})
Ex(e

∫ β
0 f (ξs )ds1{ξ[0,β] ⊂ Λ}1{ξβ = y})

(2.29)

for all v ∈ R
Λ. The right-hand side of (2.29) for f = f ∗ reads

∑
x,y∈Λ

u(x)u(y)Ex

((∫ β

0
v(ξs)ds

)
e
∫ β

0 f (ξs )ds1{ξ[0,β] ⊂ Λ}1{ξβ = y}
)

=
∑
x∈Λ

u(x)2
Ex

(
M

(f ∗)
β

∫ β

0
v(ξs)ds

)

=
∫ β

0
ds Ẽ

(f ∗)(v(ξs)
)
,

where E
(f ∗) is the expectation with respect to the transform with the martingale (M

(f ∗)
β )β≥0 (compare remark fol-

lowing Proposition VIII.3.9 in [24]), starting at its invariant measure u2(x) = p(x), x ∈ Λ. Therefore Ẽ
(f ∗)(v(ξs)) =

〈v,p〉, because the transformed random walk does not leave the set Λ and is stationary when started in its invariant
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measure. Thus f = f ∗ solves the variational problem on the right-hand side of (2.29) and gives finally after short
calculations

J
(sym)

β,Λ (p) ≤ β
〈
f ∗,p

〉 = −β

〈
�Λu

u
,u

〉
= −β

∑
x∈Λ

u(x)�Λu(x) = β

(
2d −

∑
x,y∈Λ:
|x−y|=1

u(x)u(y)

)

= β
1

2

∑
x,y∈Λ:
|x−y|=1

(√
p(x) − √

p(y)
)2 = βIΛ(p).

�

We will give a heuristic interpretation in terms of the cycle structure. The measure μ
(sym)

Λ,N in (2.19) admits a repre-
sentation which goes back to Feynman 1953 [16]; in fact he considered Brownian motions instead of random walks on
Z

d . Every permutation σ ∈ SN can be written as a concatenation of cycles. Given a cycle (i, σ (i), σ 2(i), . . . , σ k−1(i))

with σk(i) = i and precisely k distinct indices, the contribution coming from this cycle is independent of all the other
indices. Furthermore, by the fact that μ

β
xi,xσ(i)

is the conditional distribution given that the random walk ends in xσ(i),
this contribution (also executing the k integrals over xσ l(i) ∈ Λ for l = k − 1, k − 2, . . . ,0) turns the corresponding
k random walk bridges of length β into one random walk bridge of length kβ , starting and ending in the same point
xi ∈ Λ and visiting Λ at the times β,2β, . . . , (k − 1)β . Hence,

μ
(sym)

Λ,N = 1

N !
∑

σ∈SN

⊗
k∈N

(∑
yk∈Λ

μk,β,Λ
yk,yk

)⊗fk(σ )

,

where fk(σ ) denotes the number of cycles in σ of length precisely equal to k, and μ
k,β,Λ
x,y is the random walk bridge

measure μ
kβ
x,y = Px(·1{ξβ = y}) , restricted to the event

⋂k
l=1{ξlβ ∈ Λ}. (See [18], Lemma 2.1, for related combi-

natorial considerations.) If fN(σ ) = 1 (i.e., if σ is a cycle), then we are considering just one random walk bridge
ξ of length Nβ , with uniform initial measure on Λ, on the event

⋂N
l=1{ξlβ ∈ Λ}. Furthermore, YN is equal to the

normalised occupation measure of this random walk. For such a σ , the limit N → ∞ turns into a limit for diverging
time, and the corresponding large-deviation principle of Donsker and Varadhan formally applies. The result in The-
orem 2.12 corresponds to the appearance of BEC in trap potentials [21]. That is, the box Λ is not growing with the
particle number as in the thermodynamic limit.

In [2] large deviation results are obtained for the cycle representation for integer partitions and a phase transition
for the path measure is proven in the thermodynamic limit which corresponds to the BEC of the ideal gas.

It has been proved by Sütö [27] that the non-vanishing of the probability for long cycles is equivalent with Bose–
Einstein condensation for non-interacting bosons. The work [7] studies large deviations for different cycles statistics
in the grandcanonical ensemble.

If a permutation σ does not contain a cycle of length ≈ Nα , for some α > 0, its contribution is quantified with
a different rate, compare [7] and for the canonical ensemble [2]. In this way, Theorem 2.12 says that the large-N
behaviour of μ

(sym)
Λ,N ◦ Y−1

N is predominantly determined by all those permutations consisting of just one cycle of
length N .

2.4. Preliminaries

For the convenience of our reader, we repeat the notion of a large-deviations principle and of the most important facts
that are used in the present paper. See [15] and [12] for a comprehensive treatment of this theory.

Let X denote a topological vector space. A lower semi-continuous function I : X → [0,∞] is called a rate function
if I is not identical ∞ and has compact level sets, i.e. if I−1([0, c]) = {x ∈ X : I (x) ≤ c} is compact for any c ≥ 0.
A sequence (XN)N∈N of X -valued random variables XN satisfies the large-deviation upper bound with speed aN and
rate function I if, for any closed subset F of X ,

lim sup
N→∞

1

aN

log P(XN ∈ F) ≤ − inf
x∈F

I (x), (2.30)
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and it satisfies the large-deviation lower bound if, for any open subset G of X ,

lim inf
N→∞

1

aN

log P(XN ∈ G) ≤ − inf
x∈G

I (x). (2.31)

If both, upper and lower bound, are satisfied, one says that (XN)N satisfies a large-deviation principle. The principle
is called weak if the upper bound in (2.30) holds only for compact sets F . A weak principle can be strengthened to
a full one by showing that the sequence of distributions of XN is exponentially tight, i.e. if for any L > 0 there is a
compact subset KL of X such that P(XN ∈ Kc

L) ≤ e−LN for any N ∈ N.
One of the most important conclusions from a large deviation principle is Varadhan’s lemma, which says that, for

any bounded and continuous function F : X → R,

lim
N→∞

1

N
log

∫
eNF(XN) dP = − inf

x∈X

(
I (x) − F(x)

)
.

One standard situation in which a large deviation principle holds is the case where P is a probability measure, and
XN = 1

N
(Y1 + · · · + YN) is the mean of N i.i.d. X -valued random variables Yi whose moment generating function

M(F) =
∫

eF(Y1) dP

is finite for all elements F of the topological dual space X ∗ of X . In this case, the abstract Cramér theorem provides a
weak large deviation principle for (XN)N∈N with rate function equal to the Legendre–Fenchel transform of logM , i.e.
I (x) = supF∈X ∗(F (x) − logM(F)). An extension to independent, but not necessarily identically distributed random
variables is provided by the abstract Gärtner–Ellis theorem.

For our main theorems – Theorem 2.1, Theorem 2.2 and Theorem 2.3 – we shall rely on the following conventions.
We conceive the set P(Dβ) of probability measures on Dβ as a closed convex subset of M(Dβ), the space of finite
signed Borel measures on Dβ . M(Dβ) is a topological Hausdorff space, whose topology is induced by the set Cb(Dβ)

of continuous bounded functions on Dβ . Here Cb(Dβ) is the topological dual of M(Dβ). The set P(Dβ) of probability
measures on Dβ inherits its topology from M(Dβ). When we speak of a large deviations principle of P(Dβ)-valued
random variables, then we mean a principle on M(Dβ) with a rate function that is tacitly extended from P(Dβ) to
M(Dβ) with the value +∞. Thus, in the variational formula (2.2) the Legendre–Fenchel transform with respect to
the set Cb(Dβ) appeared. For the mean path we embed the space Dβ([0, β];R

d) continuously into L2([0, β];R
d),

hence the dual pairing is here given by the L2-scalar product.

3. Proofs

In this section we prove our main Theorems 2.1, 2.2 and 2.3. In Section 3.1 we prove the large deviations principle
in Theorem 2.1 for the empirical path measures. In Section 3.2 we prove Theorem 2.2. In Section 3.3 we prove
Theorem 2.3 both on the basis of the proof for Theorem 2.1 and the contraction principle. Section 3.4 is devoted to the
proof of the exponential tightness of the distribution of the empirical path measure under the symmetrised measure
(1.1) and the exponential tightness for certain products of not necessarily identical distributed objects coming form
the two-level large deviation method occurring in the proof of our main Theorems 2.1 and 2.3.

3.1. Proof of Theorem 2.1

For the proof of Theorem 2.1 we have to show the following inequalities and properties:
(1) For any open set A ⊂ P(Dβ),

lim inf
N→∞ log P

(sym)

N (LN ∈ A) ≥ − inf
μ∈A

I
(sym)

β (μ).

(2) For any compact set F ⊂ P(Dβ):

lim sup
N→∞

log P
(sym)

N (LN ∈ F) ≤ − inf
μ∈F

I
(sym)

β (μ).
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(3) The sequence of probability measures (P
(sym)

N ◦ L−1
N )N∈N is exponentially tight.

The symmetrised measure P
(sym)

N is not a product of i.i.d. measures, hence we first transform the probability mea-
sure into a probability measure which permits an application of a version of the Gärtner–Ellis theorem. This will
be done in Section 3.1.1 for the lower bound and in Section 3.1.2 for the upper bound, respectively. The technique
applied here is a purely combinatoric one and it is inspired by the works of [18] and [28]. The counting arguments
for the proposed combinatoric methods are given by the results in [1], where combinatoric counting was used to eval-
uate partition functions in the microcanonical ensemble. For the whole proof of Theorem 2.1 the initial distribution
measure m ∈ P(Zd) allows some kind of compactification. The exponential tightness will be proved in Section 3.4.

3.1.1. Proof of the lower bound of Theorem 2.1
Fix an open set A ∈ P(Dβ) and a finite set Λ ⊂ Z

d with m(Λ) > 0. We get the lower bound

P
(sym)

N (LN ∈ A) ≥ m(Λ)N
1

N !
∑

σ∈SN

∑
x1∈Λ

· · ·
∑

xN∈Λ

N∏
i=1

mΛ(xi)

(
N⊗

i=1

P
β
xi ,xσ(i)

)
(LN ∈ A), (3.1)

where mΛ(x) := m(x)/m(Λ) for any x ∈ Λ defines a probability measure on Λ. The terminal points xσ(i) are in Λ

as well for any σ ∈ SN,xi ∈ Λ,1 ≤ i ≤ N . We want to employ the following combinatoric scheme. We shall rewrite
the sum over permutations with a sum on pair probability measures, where we are only asking for the frequency of
transitions from an initial point in Λ to a terminal point in Λ. This frequency can be expressed in an easy way by a
pair probability measure, i.e. a probability measure on Λ × Λ. Let

P
(N)
Λ = P̃(Λ × Λ) ∩ 1

N
N

Λ×Λ
0 ,

be the set of pair probability measures Q with equal marginals such that NQ(x,y) ∈ N0 for any Q ∈ P
(N)
Λ and

any x, y ∈ Λ. Note here, that at most N entries of (Q(x, y))x,y∈Λ are nonzero for any Q ∈ P
(N)
Λ . Further, for a

configuration x = (x1, . . . , xN) ∈ ΛN and given pair probability measure Q ∈ P
(N)
Λ , let

SN(x,Q) = {
σ ∈ SN : ∀x, y ∈ Λ: �{i: xi = x, xσ(i) = y} = NQ(x,y)

}
,

be the set of permutations which are admissible with a given configuration x and pair probability measure Q. Define
the distribution

P
β
Q,N :=

( ⊗
x,y∈Λ

(
P

β
x,y

)⊗NQ(x,y)
)

for any pair probability measure Q ∈ P
(N)
Λ . Note that

N⊗
i=1

P
β
xi ,xσ(i)

= P
β
Q,N , Q ∈ P

(N)
Λ ,σ ∈ SN(x,Q), x ∈ ΛN. (3.2)

Clearly the measure in (3.2) does not depend on σ ∈ SN as long as σ ∈ SN(x,Q). Furthermore Q(1) is the empirical
measure of the configuration x ∈ ΛN , hence

N∏
i=1

mΛ(xi) =
∏
x∈Λ

mΛ(x)NQ(1)(x).

We insert a sum over Q ∈ P
(N)
Λ in (3.1) and continue the estimation in (3.1)

P
(sym)

N (LN ∈ A) ≥ m(Λ)N

N !
∑

Q∈P
(N)
Λ

∑
xi∈Λ,

1≤i≤N

∏
x∈Λ

mΛ(x)NQ(1)(x)
∑

σ∈SN(x,Q)

( ⊗
x,y∈Λ

(
P

β
x,y

)⊗NQ(x,y)
)

(LN ∈ A)
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= m(Λ)N
∑

Q∈P
(N)
Λ

∏
x∈Λ

mΛ(x)NQ(1)(x)
P

β
Q,N(LN ∈ A)

∑
xi∈Λ,

1≤i≤N

�SN(x,Q)

N ! . (3.3)

The measure P
β
Q,N is a mixed product of single distributions of the random walks with given starting and terminal

points. Recall that P
β
x,y is the conditional probability measure for a random walk starting in x with terminal location y.

Now we need to compute the counting term∑
xi∈Λ

1≤i≤N

�SN(x,Q)

N ! ,

because the remaining factors in (3.3) do not depend on x = (x1, . . . , xN) ∈ ΛN . We do this with the help of an
additional sum over configurations ω ∈ ΛN with xσ = ω, where xσ = (xσ(1), . . . , xσ(N)) ∈ (Λ)N for any permutation
σ ∈ SN . Thus∑

x∈ΛN

∑
σ∈SN(x,Q)

1 =
∑

x∈ΛN

∑
ω∈ΛN

∑
σ∈SN

1{xσ =ω}(σ )1{∀x,y∈Λ: #{i: xi=x,ωi=y}=NQ(x,y)}(ω)

=
∑

x∈ΛN:
L(x)=Q(1)

∑
ω∈ΛN:
L(ω)

= Q(1)
∑

σ∈SN

1{xσ =ω}(σ )1{∀x,y∈Λ: #{i: xi=x,ωi=y}=NQ(x,y)}(ω), (3.4)

where in the second line we took x ∈ ΛN according to the marginal Q(1), i.e. L(x) = Q(1). Here, L(x) = Q(1) means
that the first marginal of Q equals the empirical measure of the configuration x, i.e.

Q(1)(y) = 1

N

N∑
i=1

1xi
(y) for y ∈ Λ.

The same holds for the configurations ω ∈ ΛN , i.e. the sum is restricted to L(ω) = Q(1). Now we have to count
the single terms in (3.4). We start with the sum over the permutations. For fixed x ∈ ΛN and fixed ω ∈ ΛN the
number of permutations σ ∈ SN with xσ = ω is exactly

∏
x∈Λ(NQ(1)(x))!, which follows from the fact that for any

x ∈ Λ exactly (NQ(1)(x)) times the x appears in the configuration x and ω giving for the first permutation NQ(1)(x)

possibilities, for the second one NQ(1)(x) − 1 and so on. The sum over the configurations x ∈ ΛN with Q(1) = L(x)

is just the multinomial distribution(
N

NQ(1)

)
:= N !∏

x∈Λ(NQ(1)(x))! ,

where
∑

x∈Λ NQ(1)(x) = N . In (3.4) the sum over the configurations x ∈ ΛN gives the multinomial factor, because all
the other terms do not depend on the configurations x anymore. Thus, together with the counting over the permutations
we get ∑

xi∈Λ

1≤i≤N

∑
σ∈SN(x,Q)

1 = N !
∑

ω∈ΛN

L(ω)=x

1{∀x,y∈Λ: #{i: xi=x,ωi=y}=NQ(x,y)}(ω).

It remains to count the configurations ω relative to the given configuration x and frequency NQ(x,y) for any x, y ∈ Λ.

This number corresponds to the number of Euler trails in a complete graph or the number of configurations in a
microcanonical ensemble specified through the pair measure Q (cf. [1] and references therein), and equals∑

ω∈ΛN

L(ω)=x

1{∀x,y∈Λ: #{i: xi=x,ωi=y}=NQ(x,y)}(ω) =
∏

x∈Λ(NQ(1)(x))!∏
x,y∈Λ(NQ(x,y))! .
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Thus we get from (3.3)

P
(sym)

N (LN ∈ A) ≥ m(Λ)N
∑

Q∈P
(N)
Λ

∏
x∈Λ

mΛ(x)NQ(1)(x)

∏
x∈Λ(NQ(1)(x))!∏

x,y∈Λ(NQ(x,y))!P
β
Q,N(LN ∈ A).

Applying the Stirling formula for N ! ≈ NN+1/2e−N
√

2π, we get after some computation and estimation

∏
x∈Λ

mΛ(x)NQ(1)(x)

∏
x∈Λ(NQ(1)(x))!∏

x,y∈Λ(NQ(x,y))! ≥ eC|Λ|2 logNe−NH(Q|Q(1)⊗mΛ),

where

H
(
Q|Q(1) ⊗ mΛ

) =
∑

x,y∈Λ

Q(x,y) log
Q(x,y)

Q(x)m(y)

is the relative entropy of the pair probability measure Q ∈ P̃(Λ×Λ) relative to the probability measure Q(1) ⊗mΛ ∈
P̃(Λ × Λ), and where C > 0 is an absolute constant. Hence,

P
(sym)

N (LN ∈ A) ≥ m(Λ)N e−C|Λ|2 logN
∑

Q∈P
(N)
Λ

e−NH(Q|Q(1)⊗mΛ)
P

β
Q,N(LN ∈ A). (3.5)

In (3.5) there is a sum over all pair measures in P
(N)
Λ . For any pair measure Q ∈ P̃(Zd × Z

d) with finite relative

entropy H(Q|Q ⊗ m) and finite functional I
(Q)
β we need an approximation with a sequence (QN)N∈N of pair prob-

ability measures QN ∈ P
(N)
Λ converging to Q as N → ∞ in an appropriate way. Additionally, we let (ΛN)N∈N be a

sequence of sub boxes ΛN ⊂ Z
d such that ΛN ↑ Z

d as N → ∞.
This will be done in the proof of the following proposition.

Proposition 3.1. Let (ΛN)N∈N be a sequence of sub boxes ΛN ⊂ Z
d such that ΛN ↑ Z

d as N → ∞ and such that
there is ε > 0 with |ΛN |3/N = N−ε and 4|ΛN |2/N ≤ 1

2 for all N ∈ N. Then for any open set A ⊂ P(Dβ) we have

lim inf
N→∞

1

N
log

∑
Q∈P

(N)
ΛN

e−NH(Q|Q(1)⊗mΛN
)
P

β
Q,N(LN ∈ A)

≥ − inf
μ∈A

inf
Q∈P̃(Zd×Zd )

{
H

(
Q|Q(1) ⊗ m

) + I
(Q)
β (μ)

}
. (3.6)

Proof. Let A ⊂ P(Dβ) be an open set, and let minA and Q ∈ P̃(Zd × Z
d) be given. In the case H(Q|Q(1) ⊗

m) = +∞ or J
(Q)
β (μ) = +∞ the assertion (3.6) follows immediately. We assume therefore that the relative entropy

H(Q|Q(1) ⊗ m) and the functional J
(Q)
β (μ) are finite. The first assumption implies that supp(Q) ⊂ (supp(m) ×

supp(m)), because

H
(
Q|Q(1) ⊗ m

) = H
(
Q|Q(1) ⊗ Q(1)

) + H
(
Q(1)|m)

,

where H(Q(1)|m) = ∑
x∈Zd Q(1)(x) log Q(1)(x)

m(x)
. Hence, Q ∈ P̃(supp(m) × supp(m)).

Our strategy is as follows:
Step 1. In the first step we construct a sequence (Q

(N)
N )N∈N of pair probability measures Q

(N)
N ∈ P

(N)
ΛN

, such that

Q
(N)
N → Q weakly in the sense of probability measures as N → ∞ and such that the
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Step 2. lower bound

lim inf
N→∞

1

N
log P

β

Q
(N)
N ,N

(LN ∈ A) ≥ −I
(Q)
β (μ) (3.7)

for any μ ∈ A follows from a lower bound of a large deviations principle for the distribution of LN under the measure
P

β

Q
(N)
N ,N

, and that

Step 3.

lim inf
N→∞

1

N
log

(
e−NH(Q

(N)
N |Q(N,(1))

N ⊗mΛN
)
) ≥ −H

(
Q|Q(1) ⊗ m

)
. (3.8)

We will start with step 1.
Step 1. Construction of pair probability measures Q

(N)
N ∈ P

(N)
ΛN

. This construction is split into two parts. First

we construct for a given pair probability measure on Z
d × Z

d with equal marginals a pair probability measure on
ΛN × ΛN with equal marginals such that it converges weakly to the given pair probability measure on Z

d × Z
d . This

is done in Lemma 3.2. Once we have a sequence of pair probability measures on ΛN × ΛN with equal marginals we
construct for this sequence a second sequence also with equal marginals but such that their single entries are integers
when multiplied by N .

Lemma 3.2 (Marginal construction). Let Q ∈ P̃(Zd × Z
d), ΛN ⊂ Z

d and x0 ∈ ΛN and (ηN) a sequence in (0,1)

with ηN → 0 as N → ∞. Define the |ΛN |2 entries of a function QN :ΛN × ΛN → [0,1] as

QN(x,y) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Q(x,y) if x, y ∈ ΛN \ {x0},
Q(1)(x) − ∑

z∈ΛN\{x0} QN(x, z) if x ∈ ΛN \ {x0}, y = x0,

Q(1)(y) − ∑
z∈ΛN\{x0} QN(z, y) if y ∈ ΛN \ {x0}, x = x0,

1 − ∑
(x,y)∈Λ2

N :
(x,y)�=(x0,x0)

QN(x, y) if (x, y) = (x0, x0).
(3.9)

Then the following holds:

(i) QN ∈ P̃(ΛN × ΛN).

(ii) Let (ΛN)N∈N be a sequence of boxes ΛN ⊂ Z
d with ΛN ↑ Z

d as N → ∞. Then QN → Q strongly as
N → ∞.

(iii) QN(x0, x0) ≥ ηN for all N ∈ N.

Proof. (i) Clearly QN(x,y) ∈ [0,1] for all x, y ∈ ΛN \ {x0}, and QN(x,x0) = ∑
z∈Λc

N∪{x0} Q(x, z) ∈ [0,1] and

QN(x0, x) = ∑
z∈Λc

N∪{x0} Q(z,x) ∈ [0,1] for all x ∈ ΛN \ {x0}. Also

QN(x0, x0) = 1 −
( ∑

x,y∈ΛN \{x0}
Q(x,y) +

∑
x∈ΛN\{x0}

∑
y∈Λc

N∪{x0}

(
Q(x,y) + Q(y,x)

)) ∈ [0,1],

because the terms in the brackets are bounded by
∑

x,y∈Zd Q(x, y). All |ΛN |2 entries of the function QN sum up to
one, because∑

x,y∈ΛN

QN(x, y) =
∑

x,y∈ΛN \{x0}
Q(x,y)

+
∑

x∈ΛN\{x0}

(
2Q(1)(x) −

∑
y∈ΛN\{x0}

(
Q(x,y) + Q(y,x)

))
+ QN(x0, x0) = 1.
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For any x ∈ ΛN \ {x0} we get

Q
(1)
N (x) = QN(x,x0) +

∑
y∈ΛN \{x0}

Q(x,y) = Q(1)(x) = Q(2)(x)

= QN(x0, x) +
∑

y∈ΛN \{x0}
QN(y,x) = Q

(2)
N (x);

and

Q
(2)
N (x0) = QN(x0, x0) +

∑
y∈ΛN\{x0}

Q(y,x0) = 1 −
∑

x∈ΛN \{x0}
Q

(1)
N (x) = Q

(1)
N (x0).

Hence QN ∈ P̃(ΛN × ΛN).
(ii) First, a direct computation gives

QN(x0, x0) = 1 − 2
∑

z∈ΛN\{x0}
Q(1)(z) +

∑
y,z∈ΛN \{x0}

Q(z,y) =
∑

y,z∈Λc
N∪{x0}

Q(x,y),

this gives∣∣QN(x0, x0) − Q(x0, x0)
∣∣ =

∑
y,z∈Λc

N

Q(x, y), (3.10)

and hence∑
x,y∈Zd

∣∣Q(x,y) − QN(x,y)
∣∣ ≤ 2

∑
(x,y)∈(ΛN×ΛN)c

Q(x,y).

The assertion then follows since for any ε > 0 there is N0 ∈ N such that∑
x,y∈Zd

∣∣Q(x,y) − QN(x,y)
∣∣ < ε for N ≥ N.

(iii) If QN(x0, x0) = ∑
y,z∈Λc

N∪{x0} Q(x,y) < ηN for all N ∈ N we will multiply all the entries QN(x,y) for
(x, y) ∈ (ΛN ×ΛN)\{x0, x0} with the factor αN = (1−ηN)/(1−QN(x0, x0)). The resulting entries are then denoted
by Q̃N(x, y). Clearly, Q̃N(x0, x0) = 1 − ∑

(x,y)∈Λ2
N \{x0,x0} Q̃N(x, y) ≥ ηN and αN → 0 as N → ∞. As

∑
x,y∈Zd

∣∣Q(x,y) − Q̃N(x, y)
∣∣ ≤ 2

∑
(x,y)∈(ΛN×ΛN)c

Q(x,y) + (1 − αN),

all requirements in (i) and (ii) are satisfied by Q̃N . �

We now construct pair probability measures Q
(N)
N ∈ P

(N)
ΛN

. We apply the previous Lemma 3.2 for the choice ηN =
(|ΛN | − 1)2/N . Fix N ∈ N and denote the pair probability measure QN in Lemma 3.2 simply by Q. Hence, we have
the property that here is x0 ∈ ΛN such that

Q(x0, x0) ≥ (|ΛN | − 1)2

N
. (3.11)

Now we define |ΛN |2 − |ΛN | =: ν components of a vector in [0,1]ν which satisfy the conditions (1)–(4) in
Lemma A.1. These coordinates define then according to Lemma A.1 uniquely a pair probability measure in P

(N)
ΛN
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when the single components are elements of {0,1/N, . . . , (N − 1)/N,1}. Now (|ΛN | − 1)2 components are defined
as

Q
(N)
N (x, y) := �NQ(x,y)�

N
for all x, y ∈ ΛN \ {x0}, (3.12)

where �x� is the largest integer smaller or equal to x ∈ R. The remaining |ΛN | − 1 coordinates are given as

Q
(N,(1))
N (x) := �NQ(1)(x)�

N
for all x ∈ ΛN \ {x0},

where x0 ∈ ΛN as in Lemma 3.2 and in (3.11). We check that the conditions (1)–(4) of Lemma A.1 are satis-
fied, where we order the coordinates in an obvious way. Since Q

(N,(1))
N (x) ≤ Q(1)(x) for all x ∈ ΛN \ {x0} we

have
∑

x∈ΛN\{x0} Q
(N,(1))
N (x) ≤ 1, i.e. (1) is satisfied. For any x, y ∈ R+ one has �x + y� ≥ �x� + �y�. Therefore,

Q(1)(x) ≥ ∑
y∈ΛN\{x0} Q(x,y) and Q(1)(x) = Q(2)(x) ≥ ∑

y∈ΛN\{x0} Q(y,x) for all x ∈ ΛN \ {x0} imply that

Q
(N,(1))
N (x) ≥

∑
y∈ΛN\{x0}

Q
(N)
N (x, y) and Q

(N,(1))
N (x) ≥

∑
y∈ΛN\{x0}

Q
(N)
N (y, x)

for all x ∈ ΛN \{x0}. Hence, also (2) and (3) are satisfied. For x, y ∈ ΛN \{x0} we have Q
(N)
N (x, y) ≥ QN(x,y)− 1

N
=

Q(x,y) − 1
N

. Notice further that from the proof of Lemma 3.2 and our assumption (3.11) we have

QN(x0, x0) = 1 −
∑

x∈ΛN\{x0}
2Q(1)(x) +

∑
x,y∈ΛN \{x0}

Q(x,y) = Q(1)(x0) −
∑

x∈ΛN\{x0}
Q(x,x0)

= Q(x0, x0) ≥ (|ΛN | − 1)2

N
.

Hence, an estimation and application of this gives∑
x∈ΛN\{x0}

(
2Q

(N,(1))
N (x) −

∑
y∈ΛN\{x0}

Q
(N)
N (x, y)

)
≤

∑
x∈ΛN\{x0}

(
2Q(1)(x) −

∑
y∈ΛN\{x0}

Q(x,y)

)

+ (|ΛN | − 1)2

N
≤ 1,

and therefore (4). We define the remaining 2|ΛN | − 1 entries of the function Q
(N)
N as follows

Q
(N)
N (x, x0) = Q

(N,(1))
N (x) −

∑
y∈ΛN\{x0}

Q
(N)
N (x, y),

Q
(N)
N (x0, x) = Q

(N,(1))
N (x) −

∑
y∈ΛN\{x0}

Q
(N)
N (y, x) for x ∈ ΛN \ {x0}, (3.13)

Q
(N)
N (x0, x0) = 1 −

( ∑
x∈ΛN \{x0}

2Q
(N,(1))
N (x) −

∑
x,y∈ΛN \{x0}

Q
(N)
N (x, y)

)
.

Then the components in (3.12) and in (3.13) define uniquely a pair probability measure Q
(N)
N ∈ P

(N)
ΛN

for
N ∈ N.

Weak convergence of (Q
(N)
N )N∈N. For x, y ∈ ΛN \ {x0} we have

∣∣Q(N)
N (x, y) − Q(x,y)

∣∣ ≤ 1

N
,
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which implies

Q
(N)
N (x, x0) − Q(x,x0) ≤ 1

N
+

∑
y∈ΛN\{x0}

∣∣Q(x,y) − Q
(N)
N (x, y)

∣∣ ≤ |ΛN |
N

and analogously

Q
(N)
N (x0, x) − Q(x0, x) ≤ |ΛN |

N
for any x ∈ ΛN \ {x0}.

Moreover, with (3.10) we get

Q
(N)
N (x0, x0) − Q(x0, x0) ≤ |ΛN |2

N
+

∑
(x,y)∈(ΛN×ΛN)c

Q(x,y),

and therefore∑
x,y∈ΛN

∣∣Q(N)
N (x, y) − Q(x,y)

∣∣ ≤ 2|ΛN |2
N

+
∑

(x,y)∈(ΛN×ΛN)c

Q(x,y),

and the assertion follows.
Step 2. Lower bound via Gärtner–Ellis theorem. We are going to use the Gärtner–Ellis theorem to deduce that

lim inf
N→∞

1

N
log P

β

Q
(N)
N ,N

(LN ∈ A) ≥ I
(Q)
β (μ).

For doing this, we evaluate first the logarithmic moment generating function for a given F ∈ Cb(Dβ), where we take
the dual pairing P(Dβ) with Cb(Dβ) ([12], Lemma 3.2.3).

Λ(F) : = lim
N→∞

1

N
log E

β

Q
(N)
N ,N

(
eN〈F,LN 〉) = lim

N→∞
1

N
log

( ∏
x,y∈ΛN

E
β
x,y

(
eF(ξ)

)NQ
(N)
N (x,y)

)

= lim
N→∞

∑
x,y∈ΛN

Q
(N)
N (x, y) log E

β
x,y

(
eF(ξ)

)
= lim

N→∞
∑

x,y∈ΛN

Q
(N)
N (x, y) log E

β
x,y

(
eF(ξ)

) =
∑

x,y∈Zd

Q(x, y) log E
β
x,y

(
eF(ξ)

)
,

because the limit and the sum can be interchanged, and recall that QN → Q (weakly) in sense of probability measures
as N → ∞. Hence, Λ(F) exists, and

Λ(F) =
∑

x,y∈Zd

Q(x, y) log E
β
x,y

(
eF(ξ)

)
for all F ∈ Cb(Dβ).

Also, it is easily seen that Λ is lower semi-continuous and Gâteax differentiable. Thus, [15], 4.5.27, together with the
exponential tightness for the sequence (P

β

Q
(N)
N ,N

◦ L−1
N )N∈N, which is derived in Lemma 3.5, gives

lim inf
N→∞ P

β

Q
(N)
N ,N

(LN ∈ A) ≥ −I
(Q)
β (μ),

where

I
(Q)
β (μ) = sup

F∈Cb(Dβ)

{〈F,μ〉 − Λ(F)
}
, μ ∈ P(Dβ).
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Step 3. Estimation for the relative entropy. We are going to show (3.8), i.e.

lim inf
N→∞ −H

(
Q

(N)
N |Q(N,(1))

N ⊗ mΛN

) ≥ −H
(
Q|Q(1) ⊗ m

)
.

Hence we have to show the upper semi-continuity of the relative entropy. We estimate the relative entropy of the pair
probability measure Q

(N)
N with respect to Q

(N,(1))
N ⊗ mN . We intend to bound this relative entropy from above by

the relative entropy of the restriction Q|ΛN
of Q onto ΛN × ΛN with respect to the measure Q|(1)

ΛN
⊗ mN plus some

error terms. The latter relative entropy is known to converge to the relative entropy of Q with respect to Q ⊗ m, see
[12], Lemma 4.4.15. Standard properties of the entropy function for finite sample spaces give the proof of the upper
semi-continuity. Hence the assertion (3.8) follows.

Finish of the proof of the proposition. Now, (3.7) and (3.8) show that the left-hand side of (3.6) is not smaller
than

−H
(
Q|Q(1) ⊗ m

) − I
(Q)
β (μ).

Since this is the case for any μ ∈ A and any pair measure Q ∈ P̃(Zd × Z
d), the proof is finished. �

Finish of the proof of the lower bound of Theorem 2.1. Now, Proposition 3.1 gives the desired lower bound for
Theorem 2.1 when we apply it to the derived inequality in (3.5). Note that

lim inf
N→∞

1

N
log

(
m(ΛN)N e−C|ΛN |2 logN

) = 0

due to our assumption that |ΛN |3/N = N−ε . Thus,

lim inf
N→∞ log P

(sym)

N (LN ∈ A) ≥ − inf
μ∈A

I
(sym)

β (μ).

3.1.2. Proof of the upper bound of Theorem 2.1
For the upper bound we start with a finite box Λ ⊂ Z

d . Later we will perform the limit Λ ↑ Z
d . The main task is

to estimate the probability of the two events and to apply the combinatoric scheme introduced in the proof of the
lower bound. Here, we are faced with the problem that a random walk may start in Λ and terminate in Λ or the
complement Λc, or start outside Λ and terminate outside or inside the box Λ. All events have to be estimated. To
start, fix a closed set F ⊂ P(Dβ), a box Λ ⊂ Z

d and ε > 0.
We split our sum over the N initial points of the random walks into a sum over the initial points in the box Λ and

over the complement Λc for each single random walk. Thus we write∑
x1∈Zd

· · ·
∑

xN∈Zd

=
∑

a∈{1,c}N

∑
x1∈Λa1

· · ·
∑

xN∈ΛaN

.

To estimate the probability P
(sym)

N (LN ∈ F) from above, we write the probability as the sum of the follow-
ing two events. The first event is the probability with additional indicator that the number of random walks
not starting in Λ is more than εN , whereas the second event is the complement, i.e. the same probability
with indicator that the number of random walks starting in Λ is greater than or equal to (1 − ε)N . Thus for-
mally ∑

x1∈Zd

· · ·
∑

xN∈Zd

=
∑

a∈{1,c}N
�{i: ai=c}≥εN

∑
x1∈Λa1

· · ·
∑

xN∈ΛaN

+
∑

a∈{1,c}N
�{i: ai=1}≥(1−ε)N

∑
x1∈Λa1

· · ·
∑

xN∈ΛaN

.

The probability for the first event can be bounded from above by the factor 2Nm(Λc)εN . For the proba-
bility of the second event we have to sum over all possible subsets I ⊂ {1, . . . ,N} with |I | ≥ (1 − ε)N ,
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hence

P
(sym)

N (LN ∈ F)

= 1

N !
∑

σ∈SN

∑
a∈{1,c}N

∑
x1∈Λa1

· · ·
∑

xN∈ΛaN

N∏
i=1

m(xi)

(
N⊗

i=1

P
β
xi ,xσ(i)

)
(LN ∈ F)

≤ 2Nm(Λc)εN + 1

N !
∑

σ∈SN

∑
I⊂{1,...,N}
|I |>1−εN

∑
a∈{1,c}N :
I={i: ai=1}

∑
x1∈Λa1

· · ·

×
∑

xN∈ΛaN

N∏
i=1

m(xi)

(
N⊗

i=1

P
β
xi ,xσ(i)

)
(LN ∈ F). (3.14)

We consider only those random walks in the product of random walk measures in (3.14), which are conditioned to
start and terminate in the given box Λ. The contributions of the remaining random walks are estimated from above
by one. For any given permutation σ ∈ SN and subset I ⊂ {1, . . . ,N} with |I | > (1 − ε)N we define the subset
Iσ = {i ∈ {1, . . . ,N}: σ(i) ∈ I }. This means that we replace the product measure

⊗N
i=1 P

β
xi ,xσ(i)

by the product mea-

sure
⊗

i∈Iσ ∩I P
β
xi ,xσ(i)

. To perform this, we have to replace the empirical path measure LN by the empirical path
measure LIσ ∩I , given as

LIσ ∩I = 1

|Iσ ∩ I |
∑
i∈Iσ

δξ(i) .

From |I | > (1 − ε)N we get that |Iσ ∩ I | ≥ (1 − 2ε)N . We need some technical preliminaries to estimate the error of
this replacement. First note that Dβ equipped with the Skorokhod topology is Polish [12]. Next we need a metric for
the probability measures on the Polish space Dβ . Recall the Lévy metric d on the Polish space P(Dβ) [12], defined
for any two probability measures μ,ν ∈ P(Dβ) as

d(μ, ν) = inf
δ>0

{
μ(Γ ) ≤ ν

(
Γ δ

) + δ and ν(Γ ) ≤ μ
(
Γ δ

) + δ for all Γ = Γ ⊂ Dβ

}
,

where Γ δ = {μ ∈ P(Dβ): dist(μ,F ) ≤ δ} is the closed δ-neighbourhood of F . (By dist(μ,A) = infν∈A d(μ, ν) we
denote the distance to a set A ⊂ P(Dβ).) Note, NLN(A) is the number of random walk paths in any closed set
A ⊂ Dβ and therefore

NLN(F) ≤ |Iσ ∩ I |LIσ ∩I + 2εN,

which implies LN(F) ≤ LIσ ∩I (F ) + 2ε. Thus, d(LN,LIσ ∩I ) ≤ 2ε, and we get using |I | > (1 − ε)N(
N⊗

i=1

P
β
xi ,xσ(i)

)
(LN ∈ F) ≤

( ⊗
i∈Iσ ∩I

P
β
xi ,xσ(i)

)(
LN ∈ F 2ε

)
.

We insert this in (3.14) and execute all the N − |I | summations over Λaj with j /∈ I since they do not contribute
anymore. All these contributions are estimated from above by one, and hence we are left with the |I | sums over those
xi with i ∈ I , i.e. xi ∈ Λ for i ∈ I . Hence, we write x = (xi)i∈I for a configuration x ∈ ΛI and get from (3.14)

P
(sym)

N (LN ∈ F) ≤ 2Nm
(
Λc)εN

+ 1

N !
∑

σ∈SN

∑
I⊂{1,...,N}
|I |>(1−ε)N

∑
x∈ΛI

∏
i∈I

m(xi)

( ⊗
i∈Iσ ∩I

P
β
xi ,xσ(i)

)(
LIσ ∩I ∈ F 2ε

)
. (3.15)
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In the following we put |Iσ ∩ I | = n and recall (1 − 2ε)N < n ≤ N . We observe that the product measure does not
depend on the full information of the permutation σ ∈ SN . It depends only on the frequencies of indices i ∈ I such
that xi = x and xσ(i) = y for any x, y ∈ Λ. These frequencies can be expressed with some pair probability measure

Q ∈ P
(n)
Λ := P(Λ × Λ) ∩ 1

n
N

Λ×Λ;

i.e. for example there are nQ(x, y) indices i ∈ Iσ ∩ I such that xi = x and xσ(i) = y. Hence, we need to count those
permutations that satisfy the constraint and further that

Q(1) = L(x) = 1

n

∑
i∈Iσ ∩I

δxi
and Q(2) = L

(
σ(x)

) = 1

n

∑
i∈Iσ ∩I

δxσ(i)
.

Note that here the marginals Q(1) and Q(2) are not necessarily equal. But as n > (1−2ε)N we can estimate the differ-
ence of these marginals with the metric d on P(Λ × Λ). The marginal differs at most by 2ε, i.e. d(Q(1),Q(2)) ≤ 2ε.
Define the set

P
(n,ε)
Λ = {

Q ∈ P
(n)(Λ × Λ): d

(
Q(1),Q(2)

) ≤ 2ε
}
.

We rewrite the right-hand side of (3.15) with a sum on pair probability measures in the set P
(n,ε)
Λ and an additional

sum over the subsets Ĩ ⊂ I with |Ĩ | = n > (1 − 2ε)N .

P
(sym)

N (LN ∈ F)

≤ 2Nm
(
Λc)εN

+ 1

N !
∑

σ∈SN

∑
Ĩ⊂I⊂{1,...,N},
n=|Ĩ |≥(1−2ε)N

∑
Q∈P

(n,ε)
Λ

∏
x∈Λ

m(x)nQ(1)(x)

( ⊗
x,y∈Λ

(
P

β
x,y

)nQ(x,y)
)(

Ln ∈ F 2ε
) ∏

i∈I\Ĩ
m(xi)

×
∑
x∈ΛI

∑
σ∈SN

1{Ĩ = Iσ ∩ I }
N ! 1{σ∈SN : ∀x,y∈Λ: �{i∈Ĩ : xi=x,xσ(i)=y}=nQ(x,y)}(σ )

≤ 2Nm
(
Λc)εN +

∑
(1−2ε)N≤n≤N

∑
Q∈P

(n),ε
Λ

∏
x∈Λ

m(x)nQ(1)(x)

( ⊗
x,y∈Λ

(
P

β
x,y

)nQ(x,y)
)(

Ln ∈ F 2ε
)

×
∑

Ĩ⊂I⊂{1,...,N},
n=|Ĩ |

∑
x∈ΛI

1

N !SN(x, Ĩ ,Q)
∏

i∈I\Ĩ
m(xi), (3.16)

where we introduced the set

SN(x, Ĩ ,Q) = {
σ ∈ SN : ∀x, y ∈ Λ: �{i ∈ Ĩ : xi = x, xσ(i) = y} = nQ(x, y)

}
of permutations admissible with Q and the configuration x ∈ ΛI on the index set Ĩ ⊂ I .

Counting. We estimate now the cardinality of the set SN(x, Ĩ ,Q). We fix a configuration x ∈ ΛI and an index
set Ĩ ⊂ I ⊂ {1, . . . ,N} with |Ĩ | = n, (1 − 2ε)N ≤ n ≤ N . We evaluate the cardinality of the set SN(x, Ĩ ,Q) with an
additional sum over those configurations ω ∈ ΛĨ for which LĨ (ω) = Q(2), here LĨ (ω) is the empirical measure of the
configuration ω. This gives

�SN(x, Ĩ ,Q) =
∑

ω∈ΛĨ ,

L(ω)=Q(2)

1{∀x,y∈Λ: �{i∈Ĩ : xi=x,ωi=y}=nQ(x,y)}(ω)
∑

σ∈SN

1{ωi=xσ(i),∀i∈Ĩ }(σ ). (3.17)
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The last term is easily estimated as∑
σ∈SN

1{ωi=xσ(i),∀i∈Ĩ }(σ ) =
∑

Î⊂I,|Î |=|Ĩ |

∣∣{σ : Ĩ → Î bijective : ωi = xσ(i) ∀ i ∈ Ĩ }∣∣
× {

σ : {1, . . . ,N} \ Ĩ → {1, . . . ,N} \ Î bijective
}

≤
( |I |

n

) ∏
x∈Λ

(
nQ(2)(x)

)!(N − n)!.

The first term in (3.17) is given as in the lower bound via a counting of Euler trails [1]. Therefore

∑
ω∈ΛĨ

L(ω)=Q(2)

1{∀x,y∈Λ: �{i∈Ĩ : xi=x,ωi=y}=nQ(x,y)}(ω) ≤
∏

x∈Λ(nQ(1)(x))!∏
x,y∈Λ(nQ(x, y))! .

Note that the two previous estimations do not depend on the configurations x ∈ ΛI as long as

Q(1) = LĨ (x) = 1

n

∑
i∈Ĩ

δxi
.

The number of all these configurations is clearly equal n!/∏x∈Λ(nQ(1)(x))!. We split the sum over the configura-

tions x ∈ ΛI in the last line of (3.16) into a sum on (xi)i∈Ĩ ∈ ΛĨ and (xi)i∈I\Ĩ ∈ ΛI\Ĩ , and we estimate the term∏
i∈I\Ĩ m(xi) from above by one. Hence, the last line of (3.16) can be estimated as

∑
Ĩ⊂I⊂{1,...,N},

n=|Ĩ |

∑
x∈ΛI

1

N !�SN(x, Ĩ ,Q)
∏

i∈I\Ĩ
m(xi)

≤
∑

Ĩ⊂I⊂{1,...,N},
n=|Ĩ |

�
{
(xi)i∈Ĩ ∈ ΛĨ : L

(
(xi)i∈Ĩ

) = Q(1)
}

×
( |I |

n

) ∏
x∈Λ(nQ(1)(x))!∏x∈Λ(nQ(2)(x))!∏

x,y∈Λ(nQ(x, y))!
(N − n)!

N !

≤
N∑

l=n

(
N

l

)(
l

n

)2
n!(N − n)!

N !
∏

x∈Λ(nQ(2)(x))!∏
x,y∈Λ(nQ(x, y))!

≤ N

(
N

n

)2 ∏
x∈Λ(nQ(2)(x))!∏

x,y∈Λ(nQ(x, y))! ≤ N |Λ|2+C̃e2CεN

∏
x∈Λ Q(2)(x)nQ(2)(x)∏

x,y∈Λ Q(x,y)nQ(x,y)
,

where we used that there is a constant C > 0 such that
(
N
n

) ≤ eCεN for all n with (1 − 2ε)N < n ≤ N , and where we
used Stirling’s formula and some constant C̃. Inserting all this in the estimation (3.16) gives

P
(sym)

N (LN ∈ F) ≤ N |Λ|2+C̃e2CεN

N∑
n>(1−2ε)N

∑
Q∈P

(n,ε)
Λ

e−nH(Q|m⊗Q(2))
P

β
Q,n

(
Ln ∈ F 2ε

) + 2Nm
(
Λc)εN . (3.18)
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Large deviations. We now show for Λ ⊂ Z
d fixed and any ε > 0 that

lim
n→∞

1

n
log

( ∑
Q∈P

(n,ε)
Λ

e−nH(Q|m⊗Q(2))
P

β
Q,n

(
Ln ∈ F 2ε

))

≤ − inf
μ∈F 2ε

inf
Q∈Pε

Λ

{
H

(
Q|m ⊗ Q(2)

) + sup
F∈Cb(Dβ)

{
〈F,μ〉 +

∑
x,y∈Zd

Q(x, y) log E
β
x,y

(
eF(ξ)

)}}
, (3.19)

where P
(ε)
Λ = {Q ∈ P(Λ × Λ): d(Q(1),Q(2)) ≤ 2ε} is the set of pair probability measure whose marginals differs by

at most 2ε, and where the probability measure Q ∈ Pε
Λ is trivially extended to Z

d × Z
d by zero outside of Λ × Λ. To

see this, consider the logarithmic moment generating function of the distribution of Ln under the probability measure
P

β
Q,n,

Λ(Q)
n (Φ) = log E

β
Q,n

(
en〈F,Ln〉) = n

∑
x,y∈Λ

Q(x,y) log E
β
x,y

(
eF(ξ)

)
for any Q ∈ P

(n,ε)
Λ and any F ∈ Cb(Dβ). Now let Qn ∈ P

(n,ε)
Λ be maximal for the mapping Q 
→ e−nH(Q|m⊗Q(2)) ×

P
β
Q,n(Ln ∈ F 2ε). Then, since the set P

(ε)
Λ is compact, there is a pair measure Q ∈ P

(ε)
Λ with limn→∞ Qn = Q weakly.

Clearly the limit

ΛQ(F) = lim
n→∞

1

n
Λ(Q)

n (F ) =
∑

x,y∈Λ

Q(x,y) log E
β
x,y

(
eF(ξ)

)
exists, and is lower semi-continuous and Gâteax differentiable. Now the Gärtner–Ellis theorem yields that

lim sup
n→∞

1

n
log P

β
Qn,n

(
Ln ∈ F 2ε

) ≤ − inf
μ∈F 2ε

sup
F∈Cb(Dβ)

{
〈F,μ〉 +

∑
x,y∈Zd

Q(x, y) log E
β
x,y

(
eF(ξ)

)}
,

because we may assume that F 2ε is compact. We can do so, because Lemma 3.4 shows that there is a sequence of
compact sets ML ⊂ P(Dβ) such that

lim
L→∞ lim sup

n→∞
1

n
log

(
sup

Q∈P
(n)
Λ

P
β
Q,n

(
Ln ∈ Mc

L

)) = −∞.

The cardinality of the set P
(n,ε)
Λ is clearly polynomial in n, and by continuity of Q 
→ H(Q|m ⊗ Q(2)), the assertion

of (3.19) follows.
We are now in the position to perform the N → ∞ limit for the upper bound in (3.18). We get

lim sup
N→∞

1

N
log P

(sym)

N (LN ∈ F) ≤ −min
{
−2Cε − log 2 − ε logm

(
Λc),

inf
μ∈F 2ε

inf
Q∈P

(ε)
Λ

{
H

(
Q|m ⊗ Q(2)

) + I
(Q)
β (μ)

}}
,

where we recall

I
(Q)
β (μ) = sup

F∈Cb(Dβ)

{
〈F,μ〉 +

∑
x,y∈Zd

Q(x, y) log E
β
x,y

(
eF(ξ)

)}
.

The proof of the upper bound (3.1.2) of Theorem 2.1 is finished when we replace Λ ⊂ Z
d and ε by sequences

(εN)N∈N and (ΛN)N∈N with εN → 0 and ΛN ↑ Z
d as N → ∞ such that |ΛN |2/N = N−δ for some δ > 0 and such
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that εN logm(Λc
N) → −∞ as N → ∞ and use the following lemma. Recall that mN ∈ P(ΛN) is the restriction of

the initial distribution on the set ΛN .

Lemma 3.3. Fix a closed set F ⊂ P(Dβ). Then for any sequence (εn)N∈N satisfying εN → 0 as N → ∞ and any
sequence (ΛN)N∈N with ΛN ↑ Z

d as N → ∞,

lim inf
N→∞ inf

μ∈F 2ε
inf

Q∈P
(ε)
ΛN

{
H

(
Q|mN ⊗ Q(2)

) + I
(Q)
β (μ)

}
≥ inf

μ∈F
inf

Q∈P̃(Zd×Zd )

{
H

(
Q|Q(1) ⊗ m

) + I
(Q)
β (μ)

}
. (3.20)

Proof. Clearly, mN → m weakly as N → ∞. Now we pick approximating sequences of Q’s and μ’s and employ
compactness arguments. Thus, for any N ∈ N pick μN ∈ F 2εN and QN ∈ P

(εN )
ΛN

such that the sequences (H(QN |mN ⊗
Q

(2)
N )+ I

(QN)
β (μN))N∈N converges to the right-hand side of (3.20) and may therefore be assumed to be bounded. The

sequence (H(Q
(1)
N |mN))N∈N is bounded because of

H
(
QN |mN ⊗ Q

(2)
N

) = H
(
Q

(1)
N |mN

) + H
(
QN |Q(1)

N ⊗ Q
(2)
N

)
.

As Q
(1)
N has support in ΛN we have H(Q

(1)
N |mN) = H(Q

(1)
N |m), and thus the sequence (Q

(1)
N )N∈N is tight due to the

fact that the level sets of the relative entropy are compact (see [15], Lemma 6.2.12). As d(Q
(1)
N ,Q

(2)
N ) ≤ 2εN → 0 as

N → ∞, also the sequence (Q
(2)
N )N∈N is tight. By boundedness of the sequence (H(QN |Q(1)

N ⊗ Q
(1)
N ))N∈N, also the

set P := {QN : N ∈ N} is tight. Hence, according to Prohorov’s theorem we may assume that QN → Q as N → ∞
for some Q ∈ P(Zd × Z

d). Since both Q
(1)
N → Q(1) and Q

(2)
N → Q(2) as N → ∞, we get that Q ∈ P̃(Zd × Z

d).
For C > 0 sufficiently large, the sequence (μn)N∈N is contained in the set{

μ ∈ P(Dβ): inf
N∈N

I
(QN)
β (μ) ≤ C

}
.

Now it turns out that this set is relatively compact. We are going to prove this fact now. Note that it suffices to find a
family of compact sets ML ⊂ Dβ,L > 0, such that

lim
L→∞ inf

Q∈P
inf
Mc

L

I (Q) = ∞.

We prove this in the usual way with the exponential tightness and a lower bound for a large deviations principle. The
sequence (LN)N∈N is exponentially tight under the probability measure P

β
Q,N , uniformly in Q ∈ P (see Lemma 3.5).

Moreover, it is easy to see that it satisfies a large deviations principle with rate function I
(Q)
β . Indeed, note that the

logarithmic moment generating function of LN under the probability measure P
β
QN,N is easily shown to converge

towards the function

F 
→
∑

x,y∈Zd

Q(x, y) log E
β
x,y

(
eF(ξ)

)
, F ∈ Cb(Dβ),

whose Legendre–Fenchel transform is I
(Q)
β . The Gärtner–Ellis theorem then provides the proof for the large deviations

principle. For L ∈ N, pick a compact set ML ⊂ P(Dβ) such that

P
β
QN,N

(
LN ∈ Mc

L

) ≤ e−NL for any L,N ∈ N,QN ∈ P.

Now the lower bound in the mentioned large deviations principle gives us that

inf
Q∈P

inf
Mc

L

I
(Q)
β ≥ − lim inf

N→∞
1

N
log P

β
QN,N

(
LN ∈ Mc

L

) ≥ L,
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implying that the sequence (μN)N∈N is tight. Therefore, we may assume that μN ⇒ μ as N → ∞ with some μ ∈ F 1.
Since μN ∈ F 2εN for any N ∈ N and since εN → 0, we even have μ ∈ F , because F is closed. To finish now the proof
of the lemma we employ the representation of the relative entropy as a Legendre transform (see [12], Lemma 3.2.13).
This gives

inf
μ∈F 2εN

inf
Q∈P

(εN )

ΛN

{
H

(
Q|mN ⊗ Q(2)

) + I
(Q)
β (μ)

}
≥ 〈g,QN 〉 − log

〈
eg,mN ⊗ Q

(2)
N

〉 + 〈Φ,μN 〉 −
∑

x,y∈ΛN

QN(x, y) log E
β
x,y

(
eF

(
ξ
))

,

where g ∈ Cb(ΛN × ΛN) and F ∈ Cb(Dβ) are arbitrary. Hence, we get

lim inf
N→∞ inf

μ∈F 2εN

inf
Q∈P

(εN )

ΛN

{
H

(
Q|mN ⊗ Q(2)

) + I
(Q)
β (μ)

}
≥ 〈g,Q〉 − log

〈
eg,Q(1) ⊗ m

〉 + 〈F,μ〉 −
∑

x,y∈Zd

Q(x, y) log E
β
x,y

(
eF(ξ)

)
. (3.21)

Since this holds for any g ∈ Cb(ΛN × ΛN) and any F ∈ Cb(Dβ), the left-hand side of (3.21) is not smaller than

H(Q|Q(1) ⊗ m) + I
(Q)
β (μ). Therefore,

l.h.s. of (3.21) ≥ inf
μ∈F

inf
Q∈P̃(Zd×Zd )

{
H(Q|Q ⊗ m) + I

(Q)
β (μ)

}
,

and the assertion of the lemma follows. �

3.2. Proof of Theorem 2.2

We prove Theorem 2.2 in the following. Denote by Ψ the continuous mapping

Ψ :P(Dβ) → D
([0, β];R

d
)
, μ 
→ Ψ (μ) =

∫
Dβ

ωμ(dω).

Note that YN = Ψ (LN) and recall that Dβ = Dβ([0, β];Z
d). The contraction principle ([12], Lemma 2.1.4) ensures

a large deviations principle for YN under the symmetrised measure P
(sym)

N,β with the rate function

Î
(sym)

β (ω) = inf
Q∈P̃(Zd×Zd )

{
H

(
Q|Q(1) ⊗ m

) + Î
(Q)
β (ω)

}
,

where

Î
(Q)
β (ω) = inf

μ∈P(Dβ):
Ψ (μ)=ω

I
(Q)
β (μ).

Therefore we need to show that Î
(sym)

β = Ĩ
(sym)

β , and for that it suffices to show that Î
(Q)
β = Ĩ

(Q)
β . If we consider the

class of functions F ∈ Cb(Dβ) of the form Ff (ω) = ∫ β

0 ds 〈ωs,fs〉Rd for f ∈ L2([0, β];R
d) we get for μ ∈ P(Dβ)

I
(Q)
β (μ) ≥ sup

f ∈L2([0,β];Rd )

{∫
Dβ

μ(dω)

∫ β

0
ds 〈ωs,fs〉Rd −

∑
x,y∈Zd

Q(x, y) log E
β
x,y

(
e
∫ β

0 ds〈fs ,ξs 〉Rd
)}

= Ĩ
(Q)
β

(
Ψ (μ)

)
.
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If we now take the infimum over all probability measures μ ∈ P(Dβ) with Ψ (μ) = ω we get that Î
(Q)
β ≥ Ĩ

(Q)
β . To

prove the complementary bound Î
(Q)
β ≤ Ĩ

(Q)
β seems to cause major technical difficulties. We therefore proceed in an

indirect way. We show that both Î
(Q)
β and Ĩ

(Q)
β are the rate function for the same large deviations principle. In the

proof of Proposition (3.1) we have shown that the empirical path measures LN satisfies a large deviations principle
with rate function I

(Q)
β under the measure P

β
QN,N , where QN ∈ P

(N)
ΛN

is the sequence of pair probability measure from
step 1 in the proof of Proposition 3.1. According to the contraction principle the sequence (YN)N∈N satisfies, under
the measure P

β
QN,N , a large deviations principle with rate function Î

(Q)
β .

Now we show directly that the sequence (YN)N∈N under the measure P
β
QN,N satisfies a large deviations principle

with rate function Ĩ
(Q)
β , which finishes the proof. Recall that QN ∈ P

(N)
ΛN

with QN → Q as N → ∞. We perform this

in the usual setting of the Gärtner–Ellis theorem. Let f ∈ L2([0, β];R
d), the logarithmic moment generating function

is then

ΛN(f ) = log E
β
QN,N

(
eN〈f,YN 〉) = log

( ∏
x,y∈ΛN

E
β
x,y

(
e
∫ β

0 ds〈fs ,ξs 〉Rd
)NQN(x,y)

)

= N
∑

x,y∈ΛN

QN(x, y) log E
β
x,y

(
e
∫ β

0 ds〈fs ,ξs 〉Rd
)
,

and hence

Λ(f ) = lim
N→∞

1

N
ΛN(f ) =

∑
x,y∈Zd

Q(x, y) log E
β
x,y

(
e
∫ β

0 〈fs ,ξs 〉Rd ds
)
.

It is easily seen that Λ is lower semi-continuous and Gâteax differentiable. The Legendre–Fenchel transform is equal
to Ĩ

(Q)
β . According to Lemma 3.5, the sequence (YN)N∈N is exponentially tight under (P

β
QN,N)N∈N. Hence, the

Gärtner–Ellis theorem finishes the proof.

3.3. Proof of Theorem 2.3

In this subsection we prove Theorem 2.3. We denote by πs :Dβ → Z
d, s ∈ [0, β], the canonical projection πs(ω) = ωs

for ω ∈ Dβ . Then the mapping

T :P(Dβ) → P
(
Z

d
)
, μ 
→ T (μ) = 1

β

∫ β

0
ds μ ◦ π−1

s

is continuous and ZN = T (LN). Then a large deviations principle for the mean ZN of occupation local times with
rate function

Ĵ
(sym)

β (p) = inf
Q∈P̃(Zd×Zd )

{
H

(
Q|Q(1) ⊗ m

) + Ĵ
(Q)
β (p)

}
, (3.22)

where

Ĵ
(Q)
β (p) = inf

μ∈P(Dβ):
T (μ)=p

I
(Q)
β (μ),

is given via the contraction principle ([12], Lemma 2.1.4). Therefore we need to show that J
(sym)

β = Ĵ
(sym)

β , and

for that it suffices to show that J
(Q)
β = Ĵ

(Q)
β . We relax the set of functions over which we perform the supremum.
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For a fixed probability measure μ ∈ P(Dβ) we consider bounded continuous functions F ∈ Cb(Dβ) of the form

F(ω) = 1
β

∫ β

0 ds f (ωs) for any bounded function f ∈ B(Zd) and ω ∈ Dβ . Then for Q ∈ P̃(Zd × Z
d)

I
(Q)
β (μ) ≥ sup

f ∈B(Zd )

{∫
Dβ

μ(dω)
1

β

∫ β

0
ds f (ωs) −

∑
x,y∈Zd

Q(x, y) log E
β
x,y

(
e(1/β)

∫ β
0 f (ξs )ds

)}

= J (Q)
(
T (μ)

)
.

If we now take the infimum over all probability measures μ ∈ P(Dβ) with T (μ) = p we get that Ĵ
(Q)
β ≥ J

(Q)
β . To

prove the complementary bound Ĵ
(Q)
β ≤ J

(Q)
β seems to cause major technical difficulties. We therefore proceed in

an indirect way. We show that both Ĵ
(Q)
β and J

(Q)
β are the rate function for the same large deviations principle. In

the proof of Proposition 3.1 we have shown that the empirical path measures LN satisfies a large deviations principle
with rate function I

(Q)
β under the measure P

β
QN,N , where QN ∈ P

(N)
ΛN

is the sequence of pair probability measure from
step 1 in the proof of Proposition 3.1. According to the contraction principle the sequence (ZN)N∈N satisfies, under
the measure P

β
QN,N , a large deviations principle with rate function Ĵ

(Q)
β .

Now we show directly that the sequence (ZN)N∈N under the measure P
β
QN,N satisfies a large deviations principle

with rate function J
(Q)
β , which finishes the proof. Recall that QN ∈ P

(N)
ΛN

with QN → Q as N → ∞. We perform

this in the usual setting of the Gärtner–Ellis theorem. Let f ∈ B(Zd) any bounded function, the logarithmic moment
generating function is then

ΛN(f ) = log E
β
QN,N

(
eN〈f,ZN 〉) = log

( ∏
x,y∈ΛN

E
β
x,y

(
e
∫ β

0 f (ξs )ds
)NQN(x,y)

)

= N
∑

x,y∈ΛN

QN(x, y) log E
β
x,y

(
e
∫ β

0 f (ξs )ds
)
,

and hence

Λ(f ) = lim
N→∞

1

N
ΛN(f ) =

∑
x,y∈Zd

Q(x, y) log E
β
x,y

(
e
∫ β

0 f (ξs )ds
)
.

It is easily seen that Λ is lower semi-continuous and Gâteax differentiable. The Legendre–Fenchel transform is equal
to J

(Q)
β . According to Lemma 3.5, the sequence (ZN)N∈N is exponentially tight under (P

β
QN,N)N∈N. Hence, the

Gärtner–Ellis theorem finishes the proof.

3.4. Exponential tightness

We prove in this subsection the exponential tightness of the distributions of the empirical path measure LN under
P

(sym)

N and under P
β
Q,N for any pair measure Q ∈ P

(N)
ΛN

. For the first result we use the compactification given by the
initial distribution m of the random walks.

Lemma 3.4. The empirical path measures (LN)N∈N are exponentially tight under the symmetrised measure P
(sym)

N .

Proof. For l ∈ N, choose a subset Λl ⊂ Z
d such that m(Λc

l ) ≤ e−l2 . Furthermore, choose δl > 0 so small that

sup
x,y∈Λl

P
β
x,y

(
sup

t−δl≤t ′≤t ′′≤t+δl

|ξt ′ − ξt | ∧ |ξt ′′ − ξt | + sup
0≤t≤δl

∣∣ξ(t) − ξ(0)
∣∣ + sup

β−δl≤t≤β

∣∣ξ(t) − ξ(β)
∣∣ >

1

l

)
≤ e−l2,
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where we write ξ = ξ (1) for a single random walk. Consider the set

Al =
{
ω ∈ Dβ : ω(0) ∈ Λl,ω(β) ∈ Λl, sup

t−δl≤t ′≤t ′′≤t+δl

|ωt ′ − ωt | ∧ |ωt ′′ − ωt | ≤ 1

3l
,

sup
0≤t≤δl

∣∣ω(t) − ω(0)
∣∣ ≤ 1

3l
, sup
β−δl≤t≤β

∣∣ω(t) − ω(β)
∣∣ ≤ 1

3l

}
.

According to a well-known characterisation of compact subsets in Dβ , compare e.g. [10], Lemma 2.1, or [23], Al is
relative compact in Dβ with respect to the Skorokhod topology. Now put Kl := {μ ∈ P(Dβ): μ(A

c
l ) ≤ 1

l
} and note

that Kl is closed by Portmanteau’s theorem. Let M ∈ N be given and consider KM := ⋂∞
l=M Kl . The set KM is tight

and by Prohorov’s theorem KM is compact. We shall show that P
(sym)

N (LN ∈ Kc
M) ≤ e−MN . Observe that

{
LN ∈ Kc

l

} ⊂
{
�
{
i ∈ {1, . . . ,N}: ξ (i) ∈ Ac

l

}
>

N

l

}
⊂

{
�
{
i: ξ

(i)
0 ∈ Λc

l

} ≥ N

3l

}
∪

{
�
{
i : ξ (i)

β ∈ Λc
l

} ≥ N

3l

}
∪

{
�

{
i : ξ (i)

0 ∈ Λl, ξ
(i)
β ∈ Λl, sup

t−δl≤t ′≤t ′′≤t+δl

|ξt ′ − ξt | ∧ |ξt ′′ − ξt | > 1

3l
,

sup
0≤t≤δl

∣∣ξ(t) − ξ(0)
∣∣ >

1

3l
, sup
β−δl≤t≤β

∣∣ξ(t) − ξ(β)
∣∣ >

1

3l

}
≥ N

3l

}
.

Clearly,

P
(sym)

N

(
�
{
i: ξ

(i)
β ∈ Λc

l

} ≥ N

3l

)
= P

(sym)

N

(
�
{
i : ξ (i)

0 ∈ Λc
l

} ≥ N

3l

)

≤
∑

I⊂{1,...,N}:
|I |≥ N

3l

1

N !
∑

σ∈SN

∑
x∈(Zd )N

N∏
i=1

m(xi)

N⊗
i=1

Pxi ,xσ(i)

(∀i ∈ I : ξ
(i)
0 ∈ Λc

l

)

≤
∑

|I |≥(N/3l)

m
(
Λc

l

)|I | ≤ e−lN/32N.

Furthermore,

P
(sym)

N

(
�
{
i: ξ

(i)
0 ∈ Λl, ξ

(i)
β ∈ Λl, sup

t−δl≤t ′≤t ′′≤t+δl

|ξt ′ − ξt | ∧ |ξt ′′ − ξt | > 1

3l
,

sup
0≤t≤δl

∣∣ξ(t) − ξ(0)
∣∣ >

1

3l
, sup
β−δl≤t≤β

∣∣ξ(t) − ξ(β)
∣∣ >

1

3l

)

≤
∑

|I |≥ N
3l

1

N !
∑

σ∈SN

∑
x∈(Zd )N

N∏
i=1

m(xi)

N⊗
i=1

P
β
xi ,xσ(i)

(
∀i ∈ I : ξ

(i)
0 ∈ Λl, ξ

(i)
β ∈ Λl,

sup
t−δl≤t ′≤t ′′≤t+δl

|ξt ′ − ξt | ∧ |ξt ′′ − ξt | > 1

3l
, sup

0≤t≤δl

∣∣ξ(t) − ξ(0)
∣∣ >

1

3l
, sup
β−δl≤t≤β

∣∣ξ(t) − ξ(β)
∣∣ >

1

3l

)

≤
∑

|I |≥ N
3l

sup
(yi )i∈I ∈ΛI

l

∑
xi∈Al,i∈I

∏
i∈I

m(xi)
∏
i∈I

P
β
x,yi

(
sup

t−δl≤t ′≤t ′′≤t+δl

|ξt ′ − ξt | ∧ |ξt ′′ − ξt | > 1

3l
,
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sup
0≤t≤δl

∣∣ξ(t) − ξ(0)
∣∣ >

1

3l
, sup
β−δl≤t≤β

∣∣ξ(t) − ξ(β)
∣∣ >

1

3l

)
≤

∑
|I |≥(N/3l)

e−lN/3 ≤ e−lN/32N.

Hence,

P
(sym)

N

(
LN ∈ Kc

M

) ≤
∞∑

l=M

P
(sym)

N

(
LN ∈ Kc

l

) ≤ 32N
∞∑

l=M

e−lN/3 ≤ 6 × 2N e−NM/3 ≤ e−NM/5

for all large N if M > 24. This ends the proof. �

The following exponential tightness is due to the product structure of the probability measure P
β
Q,N for any Q ∈

P
(N)
ΛN

. Here we have a product of not necessarily identical distributed random walks.

Lemma 3.5. Let (QN)N∈N be any sequence of pair measures QN ∈ P
(N)
ΛN

on ΛN × ΛN with ΛN ↑ Z
d as N → ∞.

Then the family of distributions of LN (respectively of YN and of ZN ) under P
β
QN,N is exponentially tight.

Proof. We will prove the case for the empirical path measure LN . The proofs for YN and ZN follow analogously.
Our proof is an adaptation of the proof for the i.i.d. case (see [15], Lemma 6.2.6). From the previous Lemma 3.4 we
have a compact set Al ⊂ Dβ and a subset Λl ⊂ Z

d such that

sup
x,y∈Λl

P
β
x,y

(
ξ ∈ Ac

l

) ≤ e−2l2
(
el − 1

)
.

The set Ml = {ν ∈ P(Dβ): ν(Ac
l ) ≤ 1/l} is closed by Portmanteau’s theorem. For M ∈ N define KM := ⋂∞

l=M Ml .
By Prohorov’s theorem, each Ml is a relative compact subset of P(Dβ). Then we derive via Chebysheff’s inequality

for any QN ∈ P
(N)
ΛN

P
β
QN,N(LN /∈ Ml) = P

β
QN,N

(
LN

(
Ac

l

)
>

1

l

)
≤ e−2Nl

E
β
QN,N

(
e2Nl2LN(Ac

l )
)

= e−2Nl
E

β
QN,N

(
exp

(
2l2

N∑
i=1

1
{
ξ (i) ∈ Ac

l

}))

= e−2Nl
∏

x,y∈ΛN

E
β
x,y

(
exp

(
2l21

{
ξ (1) ∈ Ac

l

}))NQN(x,y)

≤ e−2Nl
∏

x,y∈ΛN

E
β
x,y

(
1 + e2l2

(
e−2l2

(
el − 1

)))NQN(x,y) ≤ e−Nl.

Therefore,

P
β
QN,N(LN /∈ KM) ≤

∞∑
l=M

P
β
QN,N(LN /∈ Ml) ≤

∞∑
l=M

e−Nl ≤ 2e−MN/2,

which implies the exponential tightness. �

Appendix

We provide a lemma for a unique characterisation of a pair measure with equal marginals via a vector in the coordinate
space. Let E ∈ N and ν := E2 − E in the following. The following lemma characterises pair probability measures
Q ∈ P({1, . . . ,E}2) which have equal first and second marginal. Recall the definition for the first and second marginal,
respectively Q(1)(j) = ∑E

k=1 Q(j, k) and Q(2)(j) = ∑E
k=1 Q(k, j) for any j ∈ {1, . . . ,E}.
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Lemma A.1 (Pair measure representation). Let x = (x(1), . . . , x(ν)) ∈ [0,1]ν be a vector with the following prop-
erties

(1)

E−2∑
k=0

x(kE+1) ≤ 1;

(2)

(k+1)E∑
j=kE+2

x(j) ≤ x(kE+1) for k = 0, . . . ,E − 2;

(3)

E−2∑
j=0

x(k+2+jE) ≤ x(kE+1) for k = 0, . . . ,E − 2;

(4) 1 ≥
E−2∑
k=0

(
2x(kE+1) −

E−2∑
j=0

x(k+2+jE)

)
.

Then x defines uniquely a pair probability measure on {1, . . . ,E}2 with equal first and second marginal.
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