A new class of Ornstein transformations with singular spectrum
Annales de l'I.H.P. Probabilités et statistiques, Tome 42 (2006) no. 6, pp. 671-681.
@article{AIHPB_2006__42_6_671_0,
     author = {El Abdalaoui, E. H. and Parreau, F. and Prikhod'ko, A. A.},
     title = {A new class of {Ornstein} transformations with singular spectrum},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {671--681},
     publisher = {Elsevier},
     volume = {42},
     number = {6},
     year = {2006},
     doi = {10.1016/j.anihpb.2005.09.001},
     mrnumber = {2269233},
     zbl = {05082859},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpb.2005.09.001/}
}
TY  - JOUR
AU  - El Abdalaoui, E. H.
AU  - Parreau, F.
AU  - Prikhod'ko, A. A.
TI  - A new class of Ornstein transformations with singular spectrum
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2006
SP  - 671
EP  - 681
VL  - 42
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpb.2005.09.001/
DO  - 10.1016/j.anihpb.2005.09.001
LA  - en
ID  - AIHPB_2006__42_6_671_0
ER  - 
%0 Journal Article
%A El Abdalaoui, E. H.
%A Parreau, F.
%A Prikhod'ko, A. A.
%T A new class of Ornstein transformations with singular spectrum
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2006
%P 671-681
%V 42
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpb.2005.09.001/
%R 10.1016/j.anihpb.2005.09.001
%G en
%F AIHPB_2006__42_6_671_0
El Abdalaoui, E. H.; Parreau, F.; Prikhod'ko, A. A. A new class of Ornstein transformations with singular spectrum. Annales de l'I.H.P. Probabilités et statistiques, Tome 42 (2006) no. 6, pp. 671-681. doi : 10.1016/j.anihpb.2005.09.001. http://www.numdam.org/articles/10.1016/j.anihpb.2005.09.001/

[1] T.R. Adams, On Smorodinsky conjecture, Proc. Amer. Math. Soc. 126 (3) (1998) 739-744. | MR | Zbl

[2] T.R. Adams, N.A. Friedman, Staircase mixing, Ergodic Theory Dynam. Systems, in press.

[3] A. Bonami, Ensembles Λp dans le dual de D , Ann. Inst. Fourier (Grenoble) 15 (1968) 293-304. | Numdam | Zbl

[4] J. Bourgain, On the spectral type of Ornstein class one transformations, Israel J. Math. 84 (1993) 53-63. | MR | Zbl

[5] J.R. Choksi, M.G. Nadkarni, The maximal spectral type of rank one transformation, Canad. Math. Pull. 37 (1) (1994) 29-36. | MR | Zbl

[6] D. Creutz, C.E. Silva, Mixing on a class of rank one transformations, Ergodic Theory Dynam. Systems 24 (2) (2004) 407-440. | MR | Zbl

[7] R.M. Dudley, Real Analysis and Probability, Wadsworth & Brooks/Cole Math. Ser., Wadsworth & Brooks/Cole, Pacific Grove, CA, 1989. | MR | Zbl

[8] E.H. El Abdalaoui, La singularité mutuelle presque sûre du spectre des transformations d'Ornstein, Israel J. Math. 112 (1999) 135-155. | MR | Zbl

[9] E.H. El Abdalaoui, On the spectrum of the powers of Ornstein transformations, Special issue on Ergodic theory and harmonic analysis, Shankyā Ser. A 62 (3) (2000) 291-306. | MR | Zbl

[10] N. Friedman, Replication and stacking in ergodic theory, Amer. Math. Monthly 99 (1992) 31-34. | MR | Zbl

[11] N.A. Friedman, Introduction to Ergodic Theory, Van Nostrand Reinhold, New York, 1970. | MR | Zbl

[12] I. Klemes, The spectral type of staircase transformations, Tohoku Math. J. 48 (1994) 247-258. | MR | Zbl

[13] I. Klemes, K. Reinhold, Rank one transformations with singular spectre type, Israel J. Math. 98 (1997) 1-14. | MR | Zbl

[14] M.G. Nadkarni, Spectral Theory of Dynamical Systems, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser, Basel, 1998. | MR | Zbl

[15] D.S. Ornstein, On the root problem in ergodic theory, in: Proc. Sixth Berkeley Symposium in Math. Statistics and Probability, University of California Press, 1971, pp. 347-356. | MR | Zbl

[16] W. Parry, Topics in Ergodic Theory, Cambridge University Press, 1981. | MR | Zbl

[17] A.A. Prikhod'Ko, Stochastic constructions of flows of rank 1, Sb. Math. 192 (11-12) (2001) 1799-1828. | MR | Zbl

[18] D. Rudolph, An example of a measure-preserving map with minimal self-joining and applications, J. Anal. Math. 35 (1979) 97-122. | MR | Zbl

Cité par Sources :