Pour une transformation continue sur un graphe topologique contenant une boucle
Pour une classe particulière de transformations appelées transformations peignées, l’ensemble de rotation possède les mêmes bonnes propriétés que celui des transformations continues de degré 1 sur le cercle.
For a continuous map on a topological graph containing a loop
For a special class of maps called combed maps, the rotation set displays the same nice properties as the continuous degree one circle maps.
Keywords: Rotation numbers, graph maps, sets of periods
Mot clés : nombres de rotation, transformations de graphes, ensembles de périodes
@article{AIF_2008__58_4_1233_0, author = {Alsed\`a, Llu{\'\i}s and Ruette, Sylvie}, title = {Rotation sets for graph maps of degree~1}, journal = {Annales de l'Institut Fourier}, pages = {1233--1294}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {4}, year = {2008}, doi = {10.5802/aif.2384}, mrnumber = {2427960}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2384/} }
TY - JOUR AU - Alsedà, Lluís AU - Ruette, Sylvie TI - Rotation sets for graph maps of degree 1 JO - Annales de l'Institut Fourier PY - 2008 SP - 1233 EP - 1294 VL - 58 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2384/ DO - 10.5802/aif.2384 LA - en ID - AIF_2008__58_4_1233_0 ER -
%0 Journal Article %A Alsedà, Lluís %A Ruette, Sylvie %T Rotation sets for graph maps of degree 1 %J Annales de l'Institut Fourier %D 2008 %P 1233-1294 %V 58 %N 4 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2384/ %R 10.5802/aif.2384 %G en %F AIF_2008__58_4_1233_0
Alsedà, Lluís; Ruette, Sylvie. Rotation sets for graph maps of degree 1. Annales de l'Institut Fourier, Tome 58 (2008) no. 4, pp. 1233-1294. doi : 10.5802/aif.2384. https://www.numdam.org/articles/10.5802/aif.2384/
[1] Sets of periods for piecewise monotone tree maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 13 (2003) no. 2, pp. 311-341 | DOI | MR | Zbl
[2] On the preservation of combinatorial types for maps on trees, Ann. Inst. Fourier (Grenoble), Volume 55 (2005) no. 7, pp. 2375-2398 | DOI | Numdam | MR | Zbl
[3] Periodic behavior on trees, Ergodic Theory Dynam. Systems, Volume 25 (2005) no. 5, pp. 1373-1400 | DOI | MR | Zbl
[4] Minimal dynamics for tree maps, Discrete Contin. Dyn. Syst. Ser. A, Volume 3 (2006) no. 20, pp. 511-541 | MR | Zbl
[5] Periodic orbits of maps of
[6] Combinatorial dynamics and entropy in dimension one, Advanced Series in Nonlinear Dynamics, 5, World Scientific Publishing Co. Inc., River Edge, NJ, 1993 | MR | Zbl
[7] Minimizing topological entropy for continuous maps on graphs, Ergodic Theory Dynam. Systems, Volume 20 (2000) no. 6, pp. 1559-1576 | DOI | MR | Zbl
[8] An extension of Sharkovskiĭ’s theorem to the
[9] Periods of maps on trees with all branching points fixed, Ergodic Theory Dynam. Systems, Volume 15 (1995) no. 2, pp. 239-246 | DOI | MR | Zbl
[10] Vertex maps for trees: algebra and periods of periodic orbits, Discrete Contin. Dyn. Syst., Volume 14 (2006) no. 3, pp. 399-408 | DOI | MR | Zbl
[11] Homoclinic points of mappings of the interval, Proc. Amer. Math. Soc., Volume 72 (1978) no. 3, pp. 576-580 | DOI | MR | Zbl
[12] Periodic points and topological entropy of one dimensional maps, Global Theory of Dynamical Systems (Lecture Notes in Mathematics, no. 819), Springer-Verlag, 1980, pp. 18-34 | MR | Zbl
[13] Rotation sets are closed, Math. Proc. Cambridge Philos. Soc., Volume 89 (1981) no. 1, pp. 107-111 | DOI | MR | Zbl
[14] On the set of periods for
[15] Periods for continuous self-maps of the figure-eight space, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 13 (2003) no. 7, pp. 1743-1754 Dynamical systems and functional equations (Murcia, 2000) | DOI | MR | Zbl
[16] Periodic points of maps of degree one of a circle, Ergodic Theory Dynamical Systems, Volume 2 (1982) no. 2, p. 221-227 (1983) | MR | Zbl
[17] Rotation numbers for monotone functions on the circle, J. London Math. Soc. (2), Volume 34 (1986) no. 2, pp. 360-368 | DOI | MR | Zbl
[18] Co-existence of cycles of a continuous mapping of the line into itself, Ukrain. Mat. Ž., Volume 16 (1964), pp. 61-71 (in Russian) | MR
[19] Coexistence of cycles of a continuous map of the line into itself, Thirty years after Sharkovskiĭ’s theorem: new perspectives (Murcia, 1994) (World Sci. Ser. Nonlinear Sci. Ser. B Spec. Theme Issues Proc.), Volume 8, World Sci. Publ., River Edge, NJ, 1995, pp. 1-11 Translated by J. Tolosa, Reprint of the paper reviewed in MR1361914 (96j:58058) | Zbl
[20] A geometric introduction to topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1972 | MR | Zbl
[21]
[22] Rotation sets for subshifts of finite type, Fund. Math., Volume 146 (1995) no. 2, pp. 189-201 | EuDML | MR | Zbl
Cité par Sources :