On étudie la préservation des orbites périodiques des applications
We study the preservation of the periodic orbits of an
Keywords: Tree maps, minimal dynamics, Tree maps, minimal dynamics
Mot clés : applications sur les arbres, dynamique minimale
@article{AIF_2005__55_7_2375_0, author = {Alsed\`a, Llu{\'\i}s and Juher, David and Mumbr\'u, Pere}, title = {On the preservation of combinatorial types for maps on trees}, journal = {Annales de l'Institut Fourier}, pages = {2375--2398}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {7}, year = {2005}, doi = {10.5802/aif.2164}, mrnumber = {2207387}, zbl = {1085.37035}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2164/} }
TY - JOUR AU - Alsedà, Lluís AU - Juher, David AU - Mumbrú, Pere TI - On the preservation of combinatorial types for maps on trees JO - Annales de l'Institut Fourier PY - 2005 SP - 2375 EP - 2398 VL - 55 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2164/ DO - 10.5802/aif.2164 LA - en ID - AIF_2005__55_7_2375_0 ER -
%0 Journal Article %A Alsedà, Lluís %A Juher, David %A Mumbrú, Pere %T On the preservation of combinatorial types for maps on trees %J Annales de l'Institut Fourier %D 2005 %P 2375-2398 %V 55 %N 7 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2164/ %R 10.5802/aif.2164 %G en %F AIF_2005__55_7_2375_0
Alsedà, Lluís; Juher, David; Mumbrú, Pere. On the preservation of combinatorial types for maps on trees. Annales de l'Institut Fourier, Tome 55 (2005) no. 7, pp. 2375-2398. doi : 10.5802/aif.2164. http://www.numdam.org/articles/10.5802/aif.2164/
[1] Topological entropy, Trans. Am. Math. Soc., Volume 114 (1965), pp. 309-319 | DOI | MR | Zbl
[2] Canonical representatives for patterns of tree maps, Topology, Volume 36 (1997), pp. 1123-1153 | DOI | MR | Zbl
[3] Patterns and minimal dynamics for graph maps (2002) (Prepublicacions UAB) | Zbl
[4] Periodic orbits of maps of Y, Trans. Amer. Math. Soc., Volume 313 (1989), pp. 475-538 | DOI | MR | Zbl
[5] Combinatorial dynamics and entropy in dimension one, Advanced Series in Nonlinear Dynamics, 5, World Scientific, second edition, 2002 | MR | Zbl
[6] Twist periodic orbits and topological entropy for continuous maps of the circle of degree one which have a fixed point, Ergod. Th. & Dynam. Sys., Volume 5 (1985), pp. 501-517 | DOI | MR | Zbl
[7] Generalizations of a theorem of Sharkovskii on orbits on continuous real -valued functions, Discrete Math., Volume 67 (1987), pp. 111-127 | DOI | MR | Zbl
[8] An extension of Sharkovskii's Theorem to the
[9] Combinatorial patterns for maps of the interval, Mem. Amer. Math. Soc., Volume 94 (1991) no. 456 | MR | Zbl
[10] A formula for the topological entropy of one-dimensional dynamics, Sci. Papers College Gen. Ed. Univ. Tokyo, Volume 30 (1980), pp. 11-22 | MR | Zbl
- Minimal set of periods for continuous self-maps of the eight space, Fixed Point Theory and Algorithms for Sciences and Engineering, Volume 2021 (2021), p. 26 (Id/No 3) | DOI:10.1186/s13663-020-00687-9 | Zbl:7525607
- On the set of periods of sigma maps of degree 1, Discrete and Continuous Dynamical Systems, Volume 35 (2015) no. 10, pp. 4683-4734 | DOI:10.3934/dcds.2015.35.4683 | Zbl:1366.37101
- Rotation sets for graph maps of degree 1, Annales de l'Institut Fourier, Volume 58 (2008) no. 4, pp. 1233-1294 | DOI:10.5802/aif.2384 | Zbl:1192.37059
Cité par 3 documents. Sources : zbMATH