Actions of finitely generated groups on -trees
[Actions de groupes de type fini sur les arbres réels]
Annales de l'Institut Fourier, Tome 58 (2008) no. 1, pp. 159-211.

On étudie les actions de groupes de type fini sur des arbres réels sous certaines hypothèses de stabilité. On démontre que soit le groupe se scinde au dessus de sous-groupes contrôlés (fixant un arc en particulier), soit que l’action peut être obtenue par recollement d’actions simples : actions sur des arbres simpliciaux, actions sur des droites, et actions venant de feuilletages mesurés sur des 2-orbifolds. Ceci étend des résultats de Sela et de Rips-Sela. Cependant, leurs résultats sont mal énoncés, et on donne un contrexemple à leurs énoncés.

La preuve repose sur une version étendue du Lemme de Scott qui est intéressante en soi. Cet énoncé affirme que si un groupe G est une limite directe de groupes ayant des scindements compatibles en un sens convenable, alors G se scinde.

We study actions of finitely generated groups on -trees under some stability hypotheses. We prove that either the group splits over some controlled subgroup (fixing an arc in particular), or the action can be obtained by gluing together actions of simple types: actions on simplicial trees, actions on lines, and actions coming from measured foliations on 2-orbifolds. This extends results by Sela and Rips-Sela. However, their results are misstated, and we give a counterexample to their statements.

The proof relies on an extended version of Scott’s Lemma of independent interest. This statement claims that if a group G is a direct limit of groups having suitably compatible splittings, then G splits.

DOI : 10.5802/aif.2348
Classification : 20E08, 20F65, 20E06
Keywords: R-tree, splitting of group, Rips theory
Mot clés : arbre réel, décomposition de groupe, théorie de Rips
Guirardel, Vincent 1

1 Université Paul Sabatier Institut de Mathématiques de Toulouse, UMR 5219 31062 Toulouse cedex 9 (France)
@article{AIF_2008__58_1_159_0,
     author = {Guirardel, Vincent},
     title = {Actions of finitely generated groups on $\mathbb{R}$-trees},
     journal = {Annales de l'Institut Fourier},
     pages = {159--211},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {1},
     year = {2008},
     doi = {10.5802/aif.2348},
     mrnumber = {2401220},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.2348/}
}
TY  - JOUR
AU  - Guirardel, Vincent
TI  - Actions of finitely generated groups on $\mathbb{R}$-trees
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 159
EP  - 211
VL  - 58
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.2348/
DO  - 10.5802/aif.2348
LA  - en
ID  - AIF_2008__58_1_159_0
ER  - 
%0 Journal Article
%A Guirardel, Vincent
%T Actions of finitely generated groups on $\mathbb{R}$-trees
%J Annales de l'Institut Fourier
%D 2008
%P 159-211
%V 58
%N 1
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2348/
%R 10.5802/aif.2348
%G en
%F AIF_2008__58_1_159_0
Guirardel, Vincent. Actions of finitely generated groups on $\mathbb{R}$-trees. Annales de l'Institut Fourier, Tome 58 (2008) no. 1, pp. 159-211. doi : 10.5802/aif.2348. https://www.numdam.org/articles/10.5802/aif.2348/

[1] Alibegovic, Emina Makanin-Razborov diagrams for limit groups (2004) (math.GR/0410198)

[2] Belegradek, Igor; Szczepanski, Andrzej Endomorphisms of relatively hyperbolic groups (2005) (math.GR/0501321)

[3] Bestvina, M.; Feighn, M. Outer Limits (Preprint)

[4] Bestvina, M.; Feighn, M. Bounding the complexity of simplicial group actions on trees, Invent. Math., Volume 103 (1991) no. 3, pp. 449-469 | DOI | MR | Zbl

[5] Bestvina, M.; Feighn, M. A combination theorem for negatively curved groups, J. Differential Geom., Volume 35 (1992) no. 1, pp. 85-101 | MR | Zbl

[6] Bestvina, M.; Feighn, M. Stable actions of groups on real trees, Invent. Math., Volume 121 (1995) no. 2, pp. 287-321 | DOI | MR | Zbl

[7] Chiswell, Ian Introduction to Λ-trees, World Scientific Publishing Co. Inc., River Edge, NJ, 2001 | MR | Zbl

[8] Cohen, M. M.; Lustig, M. Very small group actions on -trees and Dehn twist automorphisms, Topology, Volume 34 (1995) no. 3, pp. 575-617 | DOI | MR | Zbl

[9] Cooperative, Group Theory MAGNUS, Computational package for exploring infinite groups, version 4.1.3 beta, 2005 (G.Baumslag director)

[10] Culler, M.; Morgan, J. W. Group actions on -trees, Proc. London Math. Soc. (3), Volume 55 (1987) no. 3, pp. 571-604 | DOI | MR | Zbl

[11] Delzant, Thomas Sur l’accessibilité acylindrique des groupes de présentation finie, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 4, pp. 1215-1224 | DOI | Numdam | Zbl

[12] Druţu, Cornelia; Sapir, Mark Groups acting on tree-graded spaces and splittings of relatively hyperbolic group (2006) (math.GR/0601305)

[13] Dunwoody, M. J. Folding sequences, The Epstein birthday schrift, Geom. Topol., Coventry, 1998, p. 139-158 (electronic) | MR | Zbl

[14] Gaboriau, D.; Levitt, G.; Paulin, F. Pseudogroups of isometries of and Rips’ theorem on free actions on -trees, Israel J. Math., Volume 87 (1994) no. 1-3, pp. 403-428 | DOI | Zbl

[15] Gaboriau, D.; Levitt, G.; Paulin, F. Pseudogroups of isometries of : reconstruction of free actions on -trees, Ergodic Theory Dynam. Systems, Volume 15 (1995) no. 4, pp. 633-652 | DOI | MR | Zbl

[16] Groves, Daniel Limit groups for relatively hyperbolic groups. II. Makanin-Razborov diagrams, Geom. Topol., Volume 9 (2005), p. 2319-2358 (electronic) | DOI | MR | Zbl

[17] Guirardel, V. Actions de groupes sur des arbres réels et dynamique dans la frontière de l’outre-espace, Université Toulouse III, jan (1998) (Ph. D. Thesis)

[18] Guirardel, V. Approximations of stable actions on -trees, Comment. Math. Helv., Volume 73 (1998) no. 1, pp. 89-121 | DOI | MR | Zbl

[19] Guirardel, V. Limit groups and groups acting freely on n-trees, Geom. Topol., Volume 8 (2004), p. 1427-1470 (electronic) | DOI | MR | Zbl

[20] Guirardel, V. Cœur et nombre d’intersection pour les actions de groupes sur les arbres, Ann. Sci. École Norm. Sup. (4), Volume 38 (2005) no. 6, pp. 847-888 | Numdam | Zbl

[21] Gusmão, Paulo Feuilletages mesurés et pseudogroupes d’isométries du cercle, J. Math. Sci. Univ. Tokyo, Volume 7 (2000) no. 3, pp. 487-508 | Zbl

[22] Imanishi, H. On codimension one foliations defined by closed one-forms with singularities, J. Math. Kyoto Univ., Volume 19 (1979) no. 2, pp. 285-291 | MR | Zbl

[23] Kapovich, I.; Weidmann, R. Acylindrical accessibility for groups acting on -trees, Math. Z., Volume 249 (2005) no. 4, pp. 773-782 | DOI | MR | Zbl

[24] Levitt, Gilbert La dynamique des pseudogroupes de rotations, Invent. Math., Volume 113 (1993) no. 3, pp. 633-670 | DOI | MR | Zbl

[25] Levitt, Gilbert Graphs of actions on -trees, Comment. Math. Helv., Volume 69 (1994) no. 1, pp. 28-38 | DOI | MR | Zbl

[26] Levitt, Gilbert; Paulin, Frédéric Geometric group actions on trees, Amer. J. Math., Volume 119 (1997) no. 1, pp. 83-102 | DOI | MR | Zbl

[27] Morgan, John W. Ergodic theory and free actions of groups on -trees, Invent. Math., Volume 94 (1988) no. 3, pp. 605-622 | DOI | MR | Zbl

[28] Morgan, John W.; Shalen, Peter B. Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. (2), Volume 120 (1984) no. 3, pp. 401-476 | DOI | MR | Zbl

[29] Paulin, Frédéric Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math., Volume 94 (1988) no. 1, pp. 53-80 | DOI | MR | Zbl

[30] Rips, E.; Sela, Z. Structure and rigidity in hyperbolic groups. I, Geom. Funct. Anal., Volume 4 (1994) no. 3, pp. 337-371 | DOI | MR | Zbl

[31] Scott, G. P. Finitely generated 3-manifold groups are finitely presented, J. London Math. Soc. (2), Volume 6 (1973), pp. 437-440 | DOI | MR | Zbl

[32] Sela, Z. Acylindrical accessibility for groups, Invent. Math., Volume 129 (1997) no. 3, pp. 527-565 | DOI | MR | Zbl

[33] Sela, Z. Endomorphisms of hyperbolic groups. I. The Hopf property, Topology, Volume 38 (1999) no. 2, pp. 301-321 | DOI | MR | Zbl

[34] Sela, Z. Diophantine geometry over groups. I. Makanin-Razborov diagrams, Publ. Math. Inst. Hautes Études Sci., Volume 93 (2001), pp. 31-105 | Numdam | MR | Zbl

[35] Sela, Z. Diophantine geometry over groups VII: The elementary theory of a hyperbolic group (2002) (http://www.ma.huji.ac.il/~zlil)

[36] Sela, Z. Diophantine geometry over groups. VI. The elementary theory of a free group, Geom. Funct. Anal., Volume 16 (2006) no. 3, pp. 707-730 | MR | Zbl

[37] Serre, J-P. Arbres, amalgames, SL2, Société Mathématique de France, Paris, 1977 (Rédigé avec la collaboration de Hyman Bass, Astérisque, No. 46) | Numdam | Zbl

[38] Shalen, Peter B. Dendrology and its applications, Group theory from a geometrical viewpoint (Trieste, 1990), World Sci. Publishing, River Edge, NJ, 1991, pp. 543-616 | MR | Zbl

[39] Skora, Richard Combination theorems for actions on trees (1989) (preprint)

[40] Stallings, John R. Topology of finite graphs, Invent. Math., Volume 71 (1983) no. 3, pp. 551-565 | DOI | MR | Zbl

[41] Swarup, Gadde Delzant’s variation on Scott complexity (2004) (arXiv:math.GR/0401308)

  • Dahmani, François; Francaviglia, Stefano; Martino, Armando; Touikan, Nicholas The conjugacy problem for Out(F3), Forum of Mathematics, Sigma, Volume 13 (2025) | DOI:10.1017/fms.2025.3
  • Kharlampovich, Olga; Sklinos, Rizos First-order sentences in random groups I: Universal sentences, Journal für die reine und angewandte Mathematik (Crelles Journal) (2024) | DOI:10.1515/crelle-2024-0055
  • Genevois, Anthony Automorphisms of Graph Products of Groups and Acylindrical Hyperbolicity, Memoirs of the American Mathematical Society, Volume 301 (2024) no. 1509 | DOI:10.1090/memo/1509
  • Sklinos, Rizos Fields interpretable in the free group, Proceedings of the London Mathematical Society, Volume 129 (2024) no. 6 | DOI:10.1112/plms.70009
  • Dowdall, Spencer; Gupta, Radhika; Taylor, Samuel J. Orientable maps and polynomial invariants of free-by-cyclic groups, Advances in Mathematics, Volume 415 (2023), p. 108872 | DOI:10.1016/j.aim.2023.108872
  • Fioravanti, Elia On automorphisms and splittings of special groups, Compositio Mathematica, Volume 159 (2023) no. 2, p. 232 | DOI:10.1112/s0010437x22007850
  • Sela, Z. Automorphisms of groups and a higher rank JSJ decomposition I: RAAGs and a higher rank Makanin-Razborov diagram, Geometric and Functional Analysis, Volume 33 (2023) no. 3, p. 824 | DOI:10.1007/s00039-023-00642-x
  • Liang, Hao Discrete representations of finitely generated groups into PSL(2,R)PSL(2,R), Journal of the London Mathematical Society, Volume 108 (2023) no. 5, p. 1816 | DOI:10.1112/jlms.12795
  • André, Simon Homogeneity in virtually free groups, Israel Journal of Mathematics, Volume 249 (2022) no. 1, p. 167 | DOI:10.1007/s11856-022-2311-9
  • André, Simon; Fruchter, Jonathan Formal solutions and the first‐order theory of acylindrically hyperbolic groups, Journal of the London Mathematical Society, Volume 105 (2022) no. 2, p. 1012 | DOI:10.1112/jlms.12526
  • Genevois, Anthony; Horbez, Camille Acylindrical hyperbolicity of automorphism groups of infinitely ended groups, Journal of Topology, Volume 14 (2021) no. 3, p. 963 | DOI:10.1112/topo.12203
  • Weidmann, Richard; Reinfeldt, Cornelius Makanin–Razborov diagrams for hyperbolic groups, Annales Mathématiques Blaise Pascal, Volume 26 (2020) no. 2, p. 119 | DOI:10.5802/ambp.387
  • Guirardel, Vincent; Horbez, Camille Algebraic laminations for free products and arational trees, Algebraic Geometric Topology, Volume 19 (2019) no. 5, p. 2283 | DOI:10.2140/agt.2019.19.2283
  • Gupta, Radhika; Wigglesworth, Derrick Loxodromics for the cyclic splitting complex and their centralizers, Pacific Journal of Mathematics, Volume 301 (2019) no. 1, p. 107 | DOI:10.2140/pjm.2019.301.107
  • Groves, D.; Hull, M. Homomorphisms to acylindrically hyperbolic groups I: Equationally noetherian groups and families, Transactions of the American Mathematical Society, Volume 372 (2019) no. 10, p. 7141 | DOI:10.1090/tran/7789
  • Dente Byron, Ayala; Sklinos, Rizos Fields definable in the free group, Transactions of the American Mathematical Society, Series B, Volume 6 (2019) no. 10, p. 297 | DOI:10.1090/btran/41
  • Mj, Mahan; Rafi, Kasra Algebraic ending laminations and quasiconvexity, Algebraic Geometric Topology, Volume 18 (2018) no. 4, p. 1883 | DOI:10.2140/agt.2018.18.1883
  • Groves, Daniel; Wilton, Henry The structure of limit groups over hyperbolic groups, Israel Journal of Mathematics, Volume 226 (2018) no. 1, p. 119 | DOI:10.1007/s11856-018-1692-2
  • Sklinos, Rizos The free group does not have the finite cover property, Israel Journal of Mathematics, Volume 227 (2018) no. 2, p. 563 | DOI:10.1007/s11856-018-1748-3
  • Groves, Daniel; Manning, Jason Dehn fillings and elementary splittings, Transactions of the American Mathematical Society, Volume 370 (2018) no. 5, p. 3017 | DOI:10.1090/tran/7017
  • Horbez, Camille The boundary of the outer space of a free product, Israel Journal of Mathematics, Volume 221 (2017) no. 1, p. 179 | DOI:10.1007/s11856-017-1565-0
  • Dowdall, Spencer; Taylor, Samuel J. The co‐surface graph and the geometry of hyperbolic free group extensions, Journal of Topology, Volume 10 (2017) no. 2, p. 447 | DOI:10.1112/topo.12013
  • Guirardel, Vincent; Levitt, Gilbert McCool groups of toral relatively hyperbolic groups, Algebraic Geometric Topology, Volume 15 (2016) no. 6, p. 3485 | DOI:10.2140/agt.2015.15.3485
  • COULBOIS, THIERRY; HILION, ARNAUD Ergodic currents dual to a real tree, Ergodic Theory and Dynamical Systems, Volume 36 (2016) no. 3, p. 745 | DOI:10.1017/etds.2014.78
  • Coulon, Rémi; Hull, Michael; Kent, Curtis A Cartan–Hadamard type result for relatively hyperbolic groups, Geometriae Dedicata, Volume 180 (2016) no. 1, p. 339 | DOI:10.1007/s10711-015-0105-5
  • Dowdall, Spencer; Kapovich, Ilya; Taylor, Samuel J. Cannon–Thurston maps for hyperbolic free group extensions, Israel Journal of Mathematics, Volume 216 (2016) no. 2, p. 753 | DOI:10.1007/s11856-016-1426-2
  • Minasyan, Ashot New examples of groups acting on real trees, Journal of Topology, Volume 9 (2016) no. 1, p. 192 | DOI:10.1112/jtopol/jtv035
  • Horbez, Camille Hyperbolic graphs for free products, and the Gromov boundary of the graph of cyclic splittings, Journal of Topology, Volume 9 (2016) no. 2, p. 401 | DOI:10.1112/jtopol/jtv045
  • Bestvina, Mladen; Reynolds, Patrick The boundary of the complex of free factors, Duke Mathematical Journal, Volume 164 (2015) no. 11 | DOI:10.1215/00127094-3129702
  • Bumagin, Inna Time complexity of the conjugacy problem in relatively hyperbolic groups, International Journal of Algebra and Computation, Volume 25 (2015) no. 05, p. 689 | DOI:10.1142/s0218196715500162
  • Kapovich, Ilya; Lustig, Martin Cannon-Thurston fibers for iwip automorphisms of FN, Journal of the London Mathematical Society, Volume 91 (2015) no. 1, p. 203 | DOI:10.1112/jlms/jdu069
  • CARBONE, LISA; RIPS, ELIYAHU RECONSTRUCTING GROUP ACTIONS, International Journal of Algebra and Computation, Volume 23 (2013) no. 02, p. 255 | DOI:10.1142/s021819671340002x
  • KHARLAMPOVICH, OLGA; MYASNIKOV, ALEXEI; SERBIN, DENIS ACTIONS, LENGTH FUNCTIONS, AND NON-ARCHIMEDEAN WORDS, International Journal of Algebra and Computation, Volume 23 (2013) no. 02, p. 325 | DOI:10.1142/s0218196713400031
  • Perin, Chloé; Sklinos, Rizos Homogeneity in the free group, Duke Mathematical Journal, Volume 161 (2012) no. 13 | DOI:10.1215/00127094-1813068
  • Coulbois, Thierry; Hilion, Arnaud Botany of irreducible automorphisms of free groups, Pacific Journal of Mathematics, Volume 256 (2012) no. 2, p. 291 | DOI:10.2140/pjm.2012.256.291
  • Reynolds, Patrick On indecomposable trees in the boundary of outer space, Geometriae Dedicata, Volume 153 (2011) no. 1, p. 59 | DOI:10.1007/s10711-010-9556-x
  • Dahmani, François; Guirardel, Vincent The Isomorphism Problem for All Hyperbolic Groups, Geometric and Functional Analysis, Volume 21 (2011) no. 2, p. 223 | DOI:10.1007/s00039-011-0120-0
  • Dahmani, François; Guirardel, Vincent; Przytycki, Piotr Random groups do not split, Mathematische Annalen, Volume 349 (2011) no. 3, p. 657 | DOI:10.1007/s00208-010-0532-4
  • Jaligot, Eric; Sela, Zlil Makanin–Razborov diagrams over free products, Illinois Journal of Mathematics, Volume 54 (2010) no. 1 | DOI:10.1215/ijm/1299679737
  • Groves, Daniel Limit groups for relatively hyperbolic groups. I. The basic tools, Algebraic Geometric Topology, Volume 9 (2009) no. 3, p. 1423 | DOI:10.2140/agt.2009.9.1423

Cité par 40 documents. Sources : Crossref