On étudie les actions de groupes de type fini sur des arbres réels sous certaines hypothèses de stabilité. On démontre que soit le groupe se scinde au dessus de sous-groupes contrôlés (fixant un arc en particulier), soit que l’action peut être obtenue par recollement d’actions simples : actions sur des arbres simpliciaux, actions sur des droites, et actions venant de feuilletages mesurés sur des
La preuve repose sur une version étendue du Lemme de Scott qui est intéressante en soi. Cet énoncé affirme que si un groupe
We study actions of finitely generated groups on
The proof relies on an extended version of Scott’s Lemma of independent interest. This statement claims that if a group
Keywords: R-tree, splitting of group, Rips theory
Mot clés : arbre réel, décomposition de groupe, théorie de Rips
@article{AIF_2008__58_1_159_0, author = {Guirardel, Vincent}, title = {Actions of finitely generated groups on $\mathbb{R}$-trees}, journal = {Annales de l'Institut Fourier}, pages = {159--211}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {1}, year = {2008}, doi = {10.5802/aif.2348}, mrnumber = {2401220}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2348/} }
TY - JOUR AU - Guirardel, Vincent TI - Actions of finitely generated groups on $\mathbb{R}$-trees JO - Annales de l'Institut Fourier PY - 2008 SP - 159 EP - 211 VL - 58 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2348/ DO - 10.5802/aif.2348 LA - en ID - AIF_2008__58_1_159_0 ER -
%0 Journal Article %A Guirardel, Vincent %T Actions of finitely generated groups on $\mathbb{R}$-trees %J Annales de l'Institut Fourier %D 2008 %P 159-211 %V 58 %N 1 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2348/ %R 10.5802/aif.2348 %G en %F AIF_2008__58_1_159_0
Guirardel, Vincent. Actions of finitely generated groups on $\mathbb{R}$-trees. Annales de l'Institut Fourier, Tome 58 (2008) no. 1, pp. 159-211. doi : 10.5802/aif.2348. https://www.numdam.org/articles/10.5802/aif.2348/
[1] Makanin-Razborov diagrams for limit groups (2004) (math.GR/0410198)
[2] Endomorphisms of relatively hyperbolic groups (2005) (math.GR/0501321)
[3] Outer Limits (Preprint)
[4] Bounding the complexity of simplicial group actions on trees, Invent. Math., Volume 103 (1991) no. 3, pp. 449-469 | DOI | MR | Zbl
[5] A combination theorem for negatively curved groups, J. Differential Geom., Volume 35 (1992) no. 1, pp. 85-101 | MR | Zbl
[6] Stable actions of groups on real trees, Invent. Math., Volume 121 (1995) no. 2, pp. 287-321 | DOI | MR | Zbl
[7] Introduction to
[8] Very small group actions on
[9] MAGNUS, Computational package for exploring infinite groups, version 4.1.3 beta, 2005 (G.Baumslag director)
[10] Group actions on
[11] Sur l’accessibilité acylindrique des groupes de présentation finie, Ann. Inst. Fourier (Grenoble), Volume 49 (1999) no. 4, pp. 1215-1224 | DOI | Numdam | Zbl
[12] Groups acting on tree-graded spaces and splittings of relatively hyperbolic group (2006) (math.GR/0601305)
[13] Folding sequences, The Epstein birthday schrift, Geom. Topol., Coventry, 1998, p. 139-158 (electronic) | MR | Zbl
[14] Pseudogroups of isometries of
[15] Pseudogroups of isometries of
[16] Limit groups for relatively hyperbolic groups. II. Makanin-Razborov diagrams, Geom. Topol., Volume 9 (2005), p. 2319-2358 (electronic) | DOI | MR | Zbl
[17] Actions de groupes sur des arbres réels et dynamique dans la frontière de l’outre-espace, Université Toulouse III, jan (1998) (Ph. D. Thesis)
[18] Approximations of stable actions on
[19] Limit groups and groups acting freely on
[20] Cœur et nombre d’intersection pour les actions de groupes sur les arbres, Ann. Sci. École Norm. Sup. (4), Volume 38 (2005) no. 6, pp. 847-888 | Numdam | Zbl
[21] Feuilletages mesurés et pseudogroupes d’isométries du cercle, J. Math. Sci. Univ. Tokyo, Volume 7 (2000) no. 3, pp. 487-508 | Zbl
[22] On codimension one foliations defined by closed one-forms with singularities, J. Math. Kyoto Univ., Volume 19 (1979) no. 2, pp. 285-291 | MR | Zbl
[23] Acylindrical accessibility for groups acting on
[24] La dynamique des pseudogroupes de rotations, Invent. Math., Volume 113 (1993) no. 3, pp. 633-670 | DOI | MR | Zbl
[25] Graphs of actions on
[26] Geometric group actions on trees, Amer. J. Math., Volume 119 (1997) no. 1, pp. 83-102 | DOI | MR | Zbl
[27] Ergodic theory and free actions of groups on
[28] Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. (2), Volume 120 (1984) no. 3, pp. 401-476 | DOI | MR | Zbl
[29] Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math., Volume 94 (1988) no. 1, pp. 53-80 | DOI | MR | Zbl
[30] Structure and rigidity in hyperbolic groups. I, Geom. Funct. Anal., Volume 4 (1994) no. 3, pp. 337-371 | DOI | MR | Zbl
[31] Finitely generated
[32] Acylindrical accessibility for groups, Invent. Math., Volume 129 (1997) no. 3, pp. 527-565 | DOI | MR | Zbl
[33] Endomorphisms of hyperbolic groups. I. The Hopf property, Topology, Volume 38 (1999) no. 2, pp. 301-321 | DOI | MR | Zbl
[34] Diophantine geometry over groups. I. Makanin-Razborov diagrams, Publ. Math. Inst. Hautes Études Sci., Volume 93 (2001), pp. 31-105 | Numdam | MR | Zbl
[35] Diophantine geometry over groups VII: The elementary theory of a hyperbolic group (2002) (http://www.ma.huji.ac.il/~zlil)
[36] Diophantine geometry over groups. VI. The elementary theory of a free group, Geom. Funct. Anal., Volume 16 (2006) no. 3, pp. 707-730 | MR | Zbl
[37] Arbres, amalgames,
[38] Dendrology and its applications, Group theory from a geometrical viewpoint (Trieste, 1990), World Sci. Publishing, River Edge, NJ, 1991, pp. 543-616 | MR | Zbl
[39] Combination theorems for actions on trees (1989) (preprint)
[40] Topology of finite graphs, Invent. Math., Volume 71 (1983) no. 3, pp. 551-565 | DOI | MR | Zbl
[41] Delzant’s variation on Scott complexity (2004) (arXiv:math.GR/0401308)
- The conjugacy problem for
, Forum of Mathematics, Sigma, Volume 13 (2025) | DOI:10.1017/fms.2025.3 - First-order sentences in random groups I: Universal sentences, Journal für die reine und angewandte Mathematik (Crelles Journal) (2024) | DOI:10.1515/crelle-2024-0055
- Automorphisms of Graph Products of Groups and Acylindrical Hyperbolicity, Memoirs of the American Mathematical Society, Volume 301 (2024) no. 1509 | DOI:10.1090/memo/1509
- Fields interpretable in the free group, Proceedings of the London Mathematical Society, Volume 129 (2024) no. 6 | DOI:10.1112/plms.70009
- Orientable maps and polynomial invariants of free-by-cyclic groups, Advances in Mathematics, Volume 415 (2023), p. 108872 | DOI:10.1016/j.aim.2023.108872
- On automorphisms and splittings of special groups, Compositio Mathematica, Volume 159 (2023) no. 2, p. 232 | DOI:10.1112/s0010437x22007850
- Automorphisms of groups and a higher rank JSJ decomposition I: RAAGs and a higher rank Makanin-Razborov diagram, Geometric and Functional Analysis, Volume 33 (2023) no. 3, p. 824 | DOI:10.1007/s00039-023-00642-x
- Discrete representations of finitely generated groups into PSL(2,R)
, Journal of the London Mathematical Society, Volume 108 (2023) no. 5, p. 1816 | DOI:10.1112/jlms.12795 - Homogeneity in virtually free groups, Israel Journal of Mathematics, Volume 249 (2022) no. 1, p. 167 | DOI:10.1007/s11856-022-2311-9
- Formal solutions and the first‐order theory of acylindrically hyperbolic groups, Journal of the London Mathematical Society, Volume 105 (2022) no. 2, p. 1012 | DOI:10.1112/jlms.12526
- Acylindrical hyperbolicity of automorphism groups of infinitely ended groups, Journal of Topology, Volume 14 (2021) no. 3, p. 963 | DOI:10.1112/topo.12203
- Makanin–Razborov diagrams for hyperbolic groups, Annales Mathématiques Blaise Pascal, Volume 26 (2020) no. 2, p. 119 | DOI:10.5802/ambp.387
- Algebraic laminations for free products and arational trees, Algebraic Geometric Topology, Volume 19 (2019) no. 5, p. 2283 | DOI:10.2140/agt.2019.19.2283
- Loxodromics for the cyclic splitting complex and their centralizers, Pacific Journal of Mathematics, Volume 301 (2019) no. 1, p. 107 | DOI:10.2140/pjm.2019.301.107
- Homomorphisms to acylindrically hyperbolic groups I: Equationally noetherian groups and families, Transactions of the American Mathematical Society, Volume 372 (2019) no. 10, p. 7141 | DOI:10.1090/tran/7789
- Fields definable in the free group, Transactions of the American Mathematical Society, Series B, Volume 6 (2019) no. 10, p. 297 | DOI:10.1090/btran/41
- Algebraic ending laminations and quasiconvexity, Algebraic Geometric Topology, Volume 18 (2018) no. 4, p. 1883 | DOI:10.2140/agt.2018.18.1883
- The structure of limit groups over hyperbolic groups, Israel Journal of Mathematics, Volume 226 (2018) no. 1, p. 119 | DOI:10.1007/s11856-018-1692-2
- The free group does not have the finite cover property, Israel Journal of Mathematics, Volume 227 (2018) no. 2, p. 563 | DOI:10.1007/s11856-018-1748-3
- Dehn fillings and elementary splittings, Transactions of the American Mathematical Society, Volume 370 (2018) no. 5, p. 3017 | DOI:10.1090/tran/7017
- The boundary of the outer space of a free product, Israel Journal of Mathematics, Volume 221 (2017) no. 1, p. 179 | DOI:10.1007/s11856-017-1565-0
- The co‐surface graph and the geometry of hyperbolic free group extensions, Journal of Topology, Volume 10 (2017) no. 2, p. 447 | DOI:10.1112/topo.12013
- McCool groups of toral relatively hyperbolic groups, Algebraic Geometric Topology, Volume 15 (2016) no. 6, p. 3485 | DOI:10.2140/agt.2015.15.3485
- Ergodic currents dual to a real tree, Ergodic Theory and Dynamical Systems, Volume 36 (2016) no. 3, p. 745 | DOI:10.1017/etds.2014.78
- A Cartan–Hadamard type result for relatively hyperbolic groups, Geometriae Dedicata, Volume 180 (2016) no. 1, p. 339 | DOI:10.1007/s10711-015-0105-5
- Cannon–Thurston maps for hyperbolic free group extensions, Israel Journal of Mathematics, Volume 216 (2016) no. 2, p. 753 | DOI:10.1007/s11856-016-1426-2
- New examples of groups acting on real trees, Journal of Topology, Volume 9 (2016) no. 1, p. 192 | DOI:10.1112/jtopol/jtv035
- Hyperbolic graphs for free products, and the Gromov boundary of the graph of cyclic splittings, Journal of Topology, Volume 9 (2016) no. 2, p. 401 | DOI:10.1112/jtopol/jtv045
- The boundary of the complex of free factors, Duke Mathematical Journal, Volume 164 (2015) no. 11 | DOI:10.1215/00127094-3129702
- Time complexity of the conjugacy problem in relatively hyperbolic groups, International Journal of Algebra and Computation, Volume 25 (2015) no. 05, p. 689 | DOI:10.1142/s0218196715500162
- Cannon-Thurston fibers for iwip automorphisms of FN, Journal of the London Mathematical Society, Volume 91 (2015) no. 1, p. 203 | DOI:10.1112/jlms/jdu069
- RECONSTRUCTING GROUP ACTIONS, International Journal of Algebra and Computation, Volume 23 (2013) no. 02, p. 255 | DOI:10.1142/s021819671340002x
- ACTIONS, LENGTH FUNCTIONS, AND NON-ARCHIMEDEAN WORDS, International Journal of Algebra and Computation, Volume 23 (2013) no. 02, p. 325 | DOI:10.1142/s0218196713400031
- Homogeneity in the free group, Duke Mathematical Journal, Volume 161 (2012) no. 13 | DOI:10.1215/00127094-1813068
- Botany of irreducible automorphisms of free groups, Pacific Journal of Mathematics, Volume 256 (2012) no. 2, p. 291 | DOI:10.2140/pjm.2012.256.291
- On indecomposable trees in the boundary of outer space, Geometriae Dedicata, Volume 153 (2011) no. 1, p. 59 | DOI:10.1007/s10711-010-9556-x
- The Isomorphism Problem for All Hyperbolic Groups, Geometric and Functional Analysis, Volume 21 (2011) no. 2, p. 223 | DOI:10.1007/s00039-011-0120-0
- Random groups do not split, Mathematische Annalen, Volume 349 (2011) no. 3, p. 657 | DOI:10.1007/s00208-010-0532-4
- Makanin–Razborov diagrams over free products, Illinois Journal of Mathematics, Volume 54 (2010) no. 1 | DOI:10.1215/ijm/1299679737
- Limit groups for relatively hyperbolic groups. I. The basic tools, Algebraic Geometric Topology, Volume 9 (2009) no. 3, p. 1423 | DOI:10.2140/agt.2009.9.1423
Cité par 40 documents. Sources : Crossref