En choisissant des “caractères” et des “logarithmes”, méromorphes sur
By using meromorphic “characters” and “logarithms” built up from Euler’s Gamma function, and by using convergent factorial series, we will give, in a first part, a “normal form” to the solutions of a regular singular difference system. It will enable us to define a connection matrix for a regular singular system. Following one of Birkhoff’s idea, we will then study its link with the problem of rational classification of systems. In a second part, we will be interested in the confluence of fuchsian difference systems to differential systems. We will show more particularly how we can get, under some natural hypotheses, the local monodromies of a limit differential system from the connection matrices of the deformation that we consider. The use of factorial series (which can diverge as power series) distinguish regular singular difference systems from their differential and
Mot clés : équations aux différences, matrice de connexion, équations différentielle, monodromie
Keywords: difference equations, connection matrix, differential equations, monodromy
@article{AIF_2006__56_6_1663_0, author = {Roques, Julien}, title = {Classification rationnelle et confluence des syst\`emes aux diff\'erences singuliers r\'eguliers}, journal = {Annales de l'Institut Fourier}, pages = {1663--1699}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {6}, year = {2006}, doi = {10.5802/aif.2224}, zbl = {1125.39019}, mrnumber = {2282672}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/aif.2224/} }
TY - JOUR AU - Roques, Julien TI - Classification rationnelle et confluence des systèmes aux différences singuliers réguliers JO - Annales de l'Institut Fourier PY - 2006 SP - 1663 EP - 1699 VL - 56 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2224/ DO - 10.5802/aif.2224 LA - fr ID - AIF_2006__56_6_1663_0 ER -
%0 Journal Article %A Roques, Julien %T Classification rationnelle et confluence des systèmes aux différences singuliers réguliers %J Annales de l'Institut Fourier %D 2006 %P 1663-1699 %V 56 %N 6 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2224/ %R 10.5802/aif.2224 %G fr %F AIF_2006__56_6_1663_0
Roques, Julien. Classification rationnelle et confluence des systèmes aux différences singuliers réguliers. Annales de l'Institut Fourier, Tome 56 (2006) no. 6, pp. 1663-1699. doi : 10.5802/aif.2224. https://www.numdam.org/articles/10.5802/aif.2224/
[1] General theory of linear difference equations, Trans. Amer. Math. Soc., Volume 12 (1911), pp. 243-284 | DOI | MR
[2] The generalized Riemann problem for linear differential equations and allied problems for linear difference and
[3] Séries de
[4] Confluence
[5] Familles fuchsiennes d’équations aux (
[6] Convergent factorial series solutions of linear difference equations, J. Diff. Equations, Volume 29 (1978), pp. 345-361 | DOI | MR | Zbl
[7] Linear systems of difference equations, Contrib. Differential Eq., Volume 1 (1963), pp. 489-518 | MR | Zbl
[8] Analytic theory of difference equations, Analytic theory of differential equations (Lecture Notes in Mathematics), Volume 183, Springer, Berlin (1971), pp. 45-58 | MR | Zbl
[9] Analytic theory of difference equations with rational and elliptic coefficients and the Riemann-Hilbert problem, Uspekhi Mat. Nauk., Volume 59 (2004), pp. 11-150 transl. Russian Math. Survey 59 (2004) pp. 1117-1154 | MR | Zbl
[10] Sommation des séries divergentes, Expo. Math., Volume 13 (1995), pp. 163-222 | MR | Zbl
[11] Leçons sur les séries d’interpolation, Gauthier-Villard, Paris, 1926
[12] Rapport du jury de l’agrégation de mathématiques, Ministère de l’Éducation Nationale, Centre National de la Documentation Pédagogique, 1994
[13] Galois theory of difference equations, Lecture Notes in Mathematics, Springer Verlag (1997), 1666 | MR | Zbl
[14] Thèse de Mathématiques Pures, Université Paul Sabatier (Toulouse III) (en préparation) (Ph. D. Thesis)
[15] Systèmes aux
[16] A course of Modern Analysis, Cambrige University Press, 1927 | MR
Cité par Sources :