Soit
Let
Keywords: Line bundles, cohomology, harmonic forms, holomorphic sections, Bergman kernel
Mot clés : fibrés en droites, cohomologie, formes harmoniques, sections holomorphes, noyaux de Bergman
@article{AIF_2005__55_4_1055_0, author = {Berman, Robert}, title = {Holomorphic {Morse} {Inequalities} on {Manifolds} with {Boundary}}, journal = {Annales de l'Institut Fourier}, pages = {1055--1103}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {4}, year = {2005}, doi = {10.5802/aif.2121}, mrnumber = {2157164}, zbl = {1082.32001}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2121/} }
TY - JOUR AU - Berman, Robert TI - Holomorphic Morse Inequalities on Manifolds with Boundary JO - Annales de l'Institut Fourier PY - 2005 SP - 1055 EP - 1103 VL - 55 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2121/ DO - 10.5802/aif.2121 LA - en ID - AIF_2005__55_4_1055_0 ER -
%0 Journal Article %A Berman, Robert %T Holomorphic Morse Inequalities on Manifolds with Boundary %J Annales de l'Institut Fourier %D 2005 %P 1055-1103 %V 55 %N 4 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2121/ %R 10.5802/aif.2121 %G en %F AIF_2005__55_4_1055_0
Berman, Robert. Holomorphic Morse Inequalities on Manifolds with Boundary. Annales de l'Institut Fourier, Tome 55 (2005) no. 4, pp. 1055-1103. doi : 10.5802/aif.2121. https://www.numdam.org/articles/10.5802/aif.2121/
[1] Théorèmes de dépendance algébrique sur les espaces complexes pseudoconcaves, Bull. Soc. Math. France, Volume 91 (1963), pp. 1-38 | Numdam | MR | Zbl
[2] Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, Volume 90 (1962), pp. 193-259 | Numdam | MR | Zbl
[3] Symplectic Geometry, Dynamical systems IV (Encyclopaedia Math. Sci.), Volume 4 (2001), pp. 1-138
[4] Bergman kernels and local holomorphic Morse inequalities, Math Z., Volume 248 (2004) no. 2, pp. 325-344 | MR | Zbl
[5] Super Toeplitz operators on holomorphic line bundles (arXiv.org/ abs/math.CV/0406032, http://arxiv.org/abs/math.CV/0406032)
[6] Bergman kernels related to Hermitian line bundles over compact comlex manifolds, Contemp. Math., 332, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[7] Inégalité de Morse pour la
[8] Real hypersurfaces in complex manifolds, Acta Math., Volume 133 (1974), pp. 219-271 | DOI | MR | Zbl
[9] Champs magnétiques et inégalité de Morse pour la
[10] Holomorphic Morse inequalities, Volume 2 (1989), pp. 93-114 | Zbl
[11] Introduction à la théorie de Hodge, Transcendental methods in algebraic geometry. Lectures given at the 3rd C.I.M.E. Session held in Cetraro, July 4-12, 1994 (Lecture Notes in Mathematics), Volume 1646 (1994), pp. 4-12
[12] A few remarks about symplectic filling, Geometry and topology, Volume 8 (2004) no. 6, pp. 277-293 | MR | Zbl
[13] Geometric bounds on the relative index, J. Inst. Math. Jussieu, Volume 1 (2002) no. 3, pp. 441465 | MR | Zbl
[14] The Neumann problem for the Cauchy-Riemann complex, Annals of Math. Studies, 75, Princeton University Press, 1972 | MR | Zbl
[15] An analogue of Demailly's inequality for strictly pseudoconvex CR manifolds, J. Differential Geom., Volume 29 (1989) no. 2, pp. 231-244 | MR | Zbl
[16] Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994 | MR | Zbl
[17] Kähler hyperbolicity and
[18] Stability of embeddings for prseudoconcave surfaces and their boundaries, Acta Math., Volume 185 (2000) no. 2, pp. 161-237 | DOI | MR | Zbl
[19]
[20] Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, A series of modern surveys in Mathematics, 48, Springer-Verlag, Berlin, 2004 | MR | Zbl
[21] Asymptotic Morse inequalities for Pseudoconcave manifolds, Ann. Scuola. Norm. Sup. Pisa CL Sci., Volume 23-1 (1996) no. 4, pp. 27-55 | Numdam | MR | Zbl
[22] Existence of holomorphic sections and perturbation of positive line bundles over
[23] Attaching analytic spaces to an analytic space along a pseudoconcave boundary, Proc. Conf. Complex Manifolds (Minneapolis) (1965), pp. 242-256 | Zbl
[24] Real and complex analysis, McGraw-Hill Book Company, international edition, 1987 | MR | Zbl
[25] Some recent results in complex manifold theory related to vanishing theorems for the semipositive case, Workshop Bonn 1984 (Bonn, 1984) (Lecture Notes in Math.), Volume 1111 (1985), pp. 169-192 | Zbl
[26] A vanishing theorem for semipositive line bundles over non-Kähler manifolds, J. Differential Geom., Volume 19 (1984) no. 2, pp. 431-452 | MR | Zbl
[27] Differential analysis on complex manifolds, Graduate Texts in Mathematics, 65, Springer-Verlag, New York-Berlin, 1980 | MR | Zbl
[28] Supersymmetry and Morse theory, J. Differential Geom., Volume 17 (1982) no. 4, pp. 661-692 | MR | Zbl
Cité par Sources :