@article{ASNSP_1996_4_23_1_27_0, author = {Marinescu, George}, title = {Asymptotic {Morse} inequalities for pseudoconcave manifolds}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {27--55}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 23}, number = {1}, year = {1996}, mrnumber = {1401416}, zbl = {0867.32004}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1996_4_23_1_27_0/} }
TY - JOUR AU - Marinescu, George TI - Asymptotic Morse inequalities for pseudoconcave manifolds JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1996 SP - 27 EP - 55 VL - 23 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1996_4_23_1_27_0/ LA - en ID - ASNSP_1996_4_23_1_27_0 ER -
%0 Journal Article %A Marinescu, George %T Asymptotic Morse inequalities for pseudoconcave manifolds %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1996 %P 27-55 %V 23 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1996_4_23_1_27_0/ %G en %F ASNSP_1996_4_23_1_27_0
Marinescu, George. Asymptotic Morse inequalities for pseudoconcave manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 23 (1996) no. 1, pp. 27-55. http://www.numdam.org/item/ASNSP_1996_4_23_1_27_0/
[1] Théorèmes de dépendence algébrique sur les espaces complexes pseudoconcaves, Bull. Soc. Math. France, 91 (1963), 1-38. | Numdam | MR | Zbl
,[2] Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259. | Numdam | MR | Zbl
- ,[3] Projective embeddings of pseudoconcave speces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1970), 231-278. | Numdam | MR | Zbl
- ,[4] Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Publ. Math. I.H.E.S., 25 (1965), 81-150. | Numdam | MR | Zbl
- ,[5] Inégalités de Morse pour la d''-cohomologie sur une variété non-compacte, Ann. Sci. École Norm. Sup. 22 (1989), 501-513. | Numdam | MR | Zbl
,[6] Holomorphic Morse inequalities for singular hermitian metrics, Preprint n. 256, Inst. Fourier, Grenoble, 1993. | MR
,[7] Intégration des équations de Cauchy-Riemann induites formelles, Sém. Goulaouic-Lions-Schzartz, Ec. Polytéchnique, 1974-1975. | MR | Zbl
,[8] Champs magnétiques et inégalités de Morse pour la d''-cohomologie, Ann. Inst. Fourier (Grenoble) 35 (1985), 189-239. | Numdam | MR | Zbl
,[9] Sur l'identité de Bochner-Kodaira-Nakano en géométrie hermitienne, Lecture Notes in Math., vol. 1198, Spinger-Verlag, Berlin, 1986, 88-97. | MR | Zbl
,[10] An analogue of Demailly's inequality for strictly pseudoconvex CR manifolds, J. Differential Geom. 29 (1989), 233-290. | Zbl
,[11] Charakterisierung der Holomorphgebiete durch die vollständige Kählersche Metrik, Math. Ann. 131 (1956), 38-75. | EuDML | MR | Zbl
,[12] Verschwindungssätze für analytische Kohomologiegruppen auf Komplexen Räume, Invent. Math. 11 (1970), 263-292. | EuDML | MR | Zbl
- ,[13] On the equivalence of imbeddings of exceptional complex spaces, Math. Ann. 79 (1964), 313-333. | EuDML | MR | Zbl
- ,[14] L2-estimates and existence theorems for the ∂ operator, Acta Math. 113 (1965), 89-152. | Zbl
,[15] On n-dimensional compact varieties with n algebraically independent functions, Amer. Math. Soc. Transl. 63 (1967), 51-177. | Zbl
,[16] Hodge Spectral Sequence and Symmetry on Compact Kähler Spaces, Publ. Res. Inst. Math. Sci. 23 (1987), 613-625. | MR | Zbl
,[17] Isomorphism theorems for cohomology groups on weakly 1-complete manifolds, Publ. Res. Inst. Math. Sci. 18 (1982), 192-232. | MR | Zbl
,[18] Attaching analytic spaces to an anlytic space along a pseudoconcave boundary, Conference on complex analysis, Minneapolis, 1964, Springer, 1965. | MR | Zbl
,[19] Meromorphe Funktionen auf kompakten analytischen Mannigfaltigkeiten, Nachr, Akad. Wiss. Göttingen, 4 (1955), 71-77. | MR | Zbl
,[20] Absolute gap-sheaves and extensions of coherent analytic sheaves, Trans. Amer. Math. Soc. 141 (1969), 361-376. | MR | Zbl
,[21] Asymptotic Morse inequalities for analytic sheaf cohomology, Sém. Bourbaki, 666 (1986). | EuDML | Numdam | MR
,[22] Some convexity properties of morphism of complex spaces, Math. Z. 217 (1994), 215-245. | EuDML | MR | Zbl
,[23] Lectures on Levi convexity of complex manifolds and cohomology vanishing theorems. Tata Institute of Fundamental Research, 1967. | MR | Zbl
,