Local well-posedness for the incompressible Euler equations in the critical Besov spaces
[Bien-posé local pour les équations d'Euler incompressible dans les espaces de Besov critique]
Annales de l'Institut Fourier, Tome 54 (2004) no. 3, pp. 773-786.

Dans cet article on établit l’existence et l’unicité de la solution locale de l’équation d’Euler incompressible dans N, N3, avec des données initiales quelconques appartenant aux espaces de Besov critique Bp,1N/p+1. De plus, un critère d’explosion est donné en terme du champ de vorticités.

In this paper we establish the existence and uniqueness of the local solutions to the incompressible Euler equations in N, N3, with any given initial data belonging to the critical Besov spaces Bp,1N/p+1. Moreover, a blowup criterion is given in terms of the vorticity field.

DOI : 10.5802/aif.2033
Classification : 76D03, 35Q35, 46E35.
Keywords: well-posedness, Euler equations, Besov spaces
Mot clés : bien-posé, equations d'Euler, espaces de Besov
Zhou, Yong 1

1 Chinese University of Hong Kong, Institute of Mathematical Sciences and Department of Mathematics, Shatin, N.T. (Hong Kong), Xiamen University, Xiamen, Fujian (Chine)
@article{AIF_2004__54_3_773_0,
     author = {Zhou, Yong},
     title = {Local well-posedness for the incompressible {Euler} equations in the critical {Besov} spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {773--786},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {3},
     year = {2004},
     doi = {10.5802/aif.2033},
     mrnumber = {2097422},
     zbl = {1097.35118},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.2033/}
}
TY  - JOUR
AU  - Zhou, Yong
TI  - Local well-posedness for the incompressible Euler equations in the critical Besov spaces
JO  - Annales de l'Institut Fourier
PY  - 2004
SP  - 773
EP  - 786
VL  - 54
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.2033/
DO  - 10.5802/aif.2033
LA  - en
ID  - AIF_2004__54_3_773_0
ER  - 
%0 Journal Article
%A Zhou, Yong
%T Local well-posedness for the incompressible Euler equations in the critical Besov spaces
%J Annales de l'Institut Fourier
%D 2004
%P 773-786
%V 54
%N 3
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2033/
%R 10.5802/aif.2033
%G en
%F AIF_2004__54_3_773_0
Zhou, Yong. Local well-posedness for the incompressible Euler equations in the critical Besov spaces. Annales de l'Institut Fourier, Tome 54 (2004) no. 3, pp. 773-786. doi : 10.5802/aif.2033. https://www.numdam.org/articles/10.5802/aif.2033/

[1] J.-T. Beale; T. Kato; A. Majda Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys, Volume 94 (1984) no. 1, pp. 61-66 | MR | Zbl

[2] J.-M. Bony Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Ecole Norm. Sup. (4), Volume 14 (1981) no. 2, pp. 209-246 | Numdam | MR | Zbl

[3] D. Chae On the well-posedness of the Euler equations in the Triebel-Lizorkin spaces., Comm. Pure Appl. Math, Volume 55 (2002) no. 5, pp. 654-678 | MR | Zbl

[4] J.-Y. Chemin Régularité de la trajectoire des particules d'un fluide parfait incompressible remplissant l'espace, J. Math. Pures Appl. (9), Volume 71 (1992) no. 5, pp. 407-417 | MR | Zbl

[5] J.-Y. Chemin Perfect incompressible fluids, Oxford Lecture Series in Mathematics and its Applications, 14, The Clarendon Press, Oxford University Press, New York, 1998 | MR | Zbl

[6] R. Danchin Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math, Volume 141 (2000) no. 3, pp. 579-614 | MR | Zbl

[7] R. Danchin Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, Volume 26 (2001) no. 7-8, pp. 1183-1233 | MR | Zbl

[8] M. Frazier; B. Jawerth; G. Weiss Littlewood-Paley theory and the study of function spaces (CBMS Regional Conference Series in Mathematics), Volume 79 (1991) | Zbl

[9] T. Kato Nonstationary flows of viscous and ideal fluids in R3, J. Functional Analysis, Volume 9 (1972), pp. 296-305 | MR | Zbl

[10] T. Kato; G. Ponce Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math, Volume 41 (1988) no. 7, pp. 891-907 | MR | Zbl

[11] H. Kozono; Y. Taniuchi Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Comm. Math. Phys., Volume 214 (2000) no. 1, pp. 191-200 | MR | Zbl

[12] H. Kozono; T. Ogawa; Y. Taniuchi The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z, Volume 242 (2002), pp. 251-278 | MR | Zbl

[13] A. Majda Vorticity and the mathematical theory of incompressible fluid flow, Frontiers of the mathematical sciences (New York, 1985) (Comm. Pure Appl. Math.), Volume 39, suppl. (1986), p. S186-S220 | Zbl

[14] T. Runst; W. Sickel Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations., de Gruyter Series in Nonlinear Analysis and Applications, 3, Walter de Gruyter \& Co., Berlin, 1996 | MR | Zbl

[15] E.M. Stein Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Monographs in Harmonic Analysis, III (Princeton Mathematical Series), Volume 43 (1993) | Zbl

[16] H. Triebel Theory of function spaces. II., Monographs in Mathematics, 84, Birkhäuser Verlag, Basel, 1992 | Zbl

[17] M. Vishik Hydrodynamics in Besov spaces., Arch. Ration. Mech. Anal, Volume 145 (1998) no. 3, pp. 197-214 | MR | Zbl

[18] M. Vishik Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. Ecole Norm. Sup. (4), Volume 32 (1999) no. 6, pp. 769-812 | Numdam | MR | Zbl

  • Hmidi, Taoufik; Houamed, Haroune; Zerguine, Mohamed Rigidity aspects of singular patches in stratified flows, Tunisian Journal of Mathematics, Volume 4 (2022) no. 3, p. 465 | DOI:10.2140/tunis.2022.4.465
  • Jiang, Zaihong; Ma, Caochuan; Zhou, Yong Commutator estimates with fractional derivatives and local existence for the generalized MHD equations, Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 3 | DOI:10.1007/s00033-021-01539-1
  • Chen, Dongxiang; Chen, Xiaoli; Sun, Lijing Well-posedness of the Euler equation in Triebel–Lizorkin–Morrey spaces, Applicable Analysis, Volume 99 (2020) no. 5, p. 772 | DOI:10.1080/00036811.2018.1510491
  • Sulaiman, Samira Alamin Vortex patch problem for Euler–Boussinesq systems, Journal of Mathematical Physics, Volume 60 (2019) no. 1 | DOI:10.1063/1.5004405
  • Qiu, Hua; Yao, Zheng-an On the well-posedness of the ideal incompressible viscoelastic flow in the critical Besov spaces, Computers Mathematics with Applications, Volume 76 (2018) no. 2, p. 257 | DOI:10.1016/j.camwa.2018.04.017
  • Ferreira, Lucas C. F.; Pérez-López, J. E. On the theory of Besov–Herz spaces and Euler equations, Israel Journal of Mathematics, Volume 220 (2017) no. 1, p. 283 | DOI:10.1007/s11856-017-1519-6
  • Xu, Jiang; Kawashima, Shuichi The frequency-localization technique and minimal decay-regularity for Euler–Maxwell equations, Journal of Mathematical Analysis and Applications, Volume 446 (2017) no. 2, p. 1537 | DOI:10.1016/j.jmaa.2016.09.058
  • Xu, Jiang; Mori, Naofumi; Kawashima, Shuichi Global existence and minimal decay regularity for the Timoshenko system: The case of non-equal wave speeds, Journal of Differential Equations, Volume 259 (2015) no. 11, p. 5533 | DOI:10.1016/j.jde.2015.06.041
  • Hassainia, Zineb; Hmidi, Taoufik On the inviscid Boussinesq system with rough initial data, Journal of Mathematical Analysis and Applications, Volume 430 (2015) no. 2, p. 777 | DOI:10.1016/j.jmaa.2015.04.087
  • Qiu, Hua; Shao, Shuguang Local well-posedness for the ideal incompressible density-dependent viscoelastic flow, Mathematical Methods in the Applied Sciences, Volume 38 (2015) no. 6, p. 1081 | DOI:10.1002/mma.3130
  • Xu, Jiang The well-posedness theory for Euler–Poisson fluids with non-zero heat conduction, Journal of Hyperbolic Differential Equations, Volume 11 (2014) no. 04, p. 679 | DOI:10.1142/s0219891614500210
  • Tang, Hao; Liu, Zhengrong Continuous properties of the solution map for the Euler equations, Journal of Mathematical Physics, Volume 55 (2014) no. 3 | DOI:10.1063/1.4867622
  • Danchin, Raphaël Remarks on the lifespan of the solutions to some models of incompressible fluid mechanics, Proceedings of the American Mathematical Society, Volume 141 (2012) no. 6, p. 1979 | DOI:10.1090/s0002-9939-2012-11591-6
  • Danchin, Raphaël; Fanelli, Francesco The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces, Journal de Mathématiques Pures et Appliquées, Volume 96 (2011) no. 3, p. 253 | DOI:10.1016/j.matpur.2011.04.005
  • Xu, Jiang; Yong, Wen-An A note on incompressible limit for compressible Euler equations, Mathematical Methods in the Applied Sciences, Volume 34 (2011) no. 7, p. 831 | DOI:10.1002/mma.1405
  • Zhong, Xin; Wu, Xing-Ping; Tang, Chun-Lei Local well-posedness for the homogeneous Euler equations, Nonlinear Analysis: Theory, Methods Applications, Volume 74 (2011) no. 11, p. 3829 | DOI:10.1016/j.na.2011.03.037
  • Fan, Jishan; Sawada, Okihiro Regularity criteria for the Euler equations with nondecaying data, Nonlinear Analysis: Theory, Methods Applications, Volume 74 (2011) no. 4, p. 1393 | DOI:10.1016/j.na.2010.10.011
  • Danchin, Raphaël On the well-posedness of the incompressible density-dependent Euler equations in theLpframework, Journal of Differential Equations, Volume 248 (2010) no. 8, p. 2130 | DOI:10.1016/j.jde.2009.09.007
  • Zhou, Yong Local well-posedness and regularity criterion for the density dependent incompressible Euler equations, Nonlinear Analysis: Theory, Methods Applications, Volume 73 (2010) no. 3, p. 750 | DOI:10.1016/j.na.2010.04.013
  • Takada, Ryo Counterexamples of Commutator Estimates in the Besov and the Triebel–Lizorkin Spaces Related to the Euler Equations, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 6, p. 2473 | DOI:10.1137/100782498
  • Даншен, Р; Danchin, Raphael Аксиально-симметричные несжимаемые потоки с ограниченным вихрем, Успехи математических наук, Volume 62 (2007) no. 3, p. 73 | DOI:10.4213/rm6761

Cité par 21 documents. Sources : Crossref