Dans cet article on établit l’existence et l’unicité de la solution locale de l’équation
d’Euler incompressible dans
In this paper we establish the existence and uniqueness of the local solutions to the
incompressible Euler equations in
Keywords: well-posedness, Euler equations, Besov spaces
Mot clés : bien-posé, equations d'Euler, espaces de Besov
@article{AIF_2004__54_3_773_0, author = {Zhou, Yong}, title = {Local well-posedness for the incompressible {Euler} equations in the critical {Besov} spaces}, journal = {Annales de l'Institut Fourier}, pages = {773--786}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {3}, year = {2004}, doi = {10.5802/aif.2033}, mrnumber = {2097422}, zbl = {1097.35118}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2033/} }
TY - JOUR AU - Zhou, Yong TI - Local well-posedness for the incompressible Euler equations in the critical Besov spaces JO - Annales de l'Institut Fourier PY - 2004 SP - 773 EP - 786 VL - 54 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2033/ DO - 10.5802/aif.2033 LA - en ID - AIF_2004__54_3_773_0 ER -
%0 Journal Article %A Zhou, Yong %T Local well-posedness for the incompressible Euler equations in the critical Besov spaces %J Annales de l'Institut Fourier %D 2004 %P 773-786 %V 54 %N 3 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2033/ %R 10.5802/aif.2033 %G en %F AIF_2004__54_3_773_0
Zhou, Yong. Local well-posedness for the incompressible Euler equations in the critical Besov spaces. Annales de l'Institut Fourier, Tome 54 (2004) no. 3, pp. 773-786. doi : 10.5802/aif.2033. https://www.numdam.org/articles/10.5802/aif.2033/
[1] Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys, Volume 94 (1984) no. 1, pp. 61-66 | MR | Zbl
[2] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Ecole Norm. Sup. (4), Volume 14 (1981) no. 2, pp. 209-246 | Numdam | MR | Zbl
[3] On the well-posedness of the Euler equations in the Triebel-Lizorkin spaces., Comm. Pure Appl. Math, Volume 55 (2002) no. 5, pp. 654-678 | MR | Zbl
[4] Régularité de la trajectoire des particules d'un fluide parfait incompressible remplissant l'espace, J. Math. Pures Appl. (9), Volume 71 (1992) no. 5, pp. 407-417 | MR | Zbl
[5] Perfect incompressible fluids, Oxford Lecture Series in Mathematics and its Applications, 14, The Clarendon Press, Oxford University Press, New York, 1998 | MR | Zbl
[6] Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math, Volume 141 (2000) no. 3, pp. 579-614 | MR | Zbl
[7] Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, Volume 26 (2001) no. 7-8, pp. 1183-1233 | MR | Zbl
[8] Littlewood-Paley theory and the study of function spaces (CBMS Regional Conference Series in Mathematics), Volume 79 (1991) | Zbl
[9] Nonstationary flows of viscous and ideal fluids in
[10] Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math, Volume 41 (1988) no. 7, pp. 891-907 | MR | Zbl
[11] Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Comm. Math. Phys., Volume 214 (2000) no. 1, pp. 191-200 | MR | Zbl
[12] The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z, Volume 242 (2002), pp. 251-278 | MR | Zbl
[13] Vorticity and the mathematical theory of incompressible fluid flow, Frontiers of the mathematical sciences (New York, 1985) (Comm. Pure Appl. Math.), Volume 39, suppl. (1986), p. S186-S220 | Zbl
[14] Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations., de Gruyter Series in Nonlinear Analysis and Applications, 3, Walter de Gruyter \& Co., Berlin, 1996 | MR | Zbl
[15] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Monographs in Harmonic Analysis, III (Princeton Mathematical Series), Volume 43 (1993) | Zbl
[16] Theory of function spaces. II., Monographs in Mathematics, 84, Birkhäuser Verlag, Basel, 1992 | Zbl
[17] Hydrodynamics in Besov spaces., Arch. Ration. Mech. Anal, Volume 145 (1998) no. 3, pp. 197-214 | MR | Zbl
[18] Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. Ecole Norm. Sup. (4), Volume 32 (1999) no. 6, pp. 769-812 | Numdam | MR | Zbl
- Rigidity aspects of singular patches in stratified flows, Tunisian Journal of Mathematics, Volume 4 (2022) no. 3, p. 465 | DOI:10.2140/tunis.2022.4.465
- Commutator estimates with fractional derivatives and local existence for the generalized MHD equations, Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 3 | DOI:10.1007/s00033-021-01539-1
- Well-posedness of the Euler equation in Triebel–Lizorkin–Morrey spaces, Applicable Analysis, Volume 99 (2020) no. 5, p. 772 | DOI:10.1080/00036811.2018.1510491
- Vortex patch problem for Euler–Boussinesq systems, Journal of Mathematical Physics, Volume 60 (2019) no. 1 | DOI:10.1063/1.5004405
- On the well-posedness of the ideal incompressible viscoelastic flow in the critical Besov spaces, Computers Mathematics with Applications, Volume 76 (2018) no. 2, p. 257 | DOI:10.1016/j.camwa.2018.04.017
- On the theory of Besov–Herz spaces and Euler equations, Israel Journal of Mathematics, Volume 220 (2017) no. 1, p. 283 | DOI:10.1007/s11856-017-1519-6
- The frequency-localization technique and minimal decay-regularity for Euler–Maxwell equations, Journal of Mathematical Analysis and Applications, Volume 446 (2017) no. 2, p. 1537 | DOI:10.1016/j.jmaa.2016.09.058
- Global existence and minimal decay regularity for the Timoshenko system: The case of non-equal wave speeds, Journal of Differential Equations, Volume 259 (2015) no. 11, p. 5533 | DOI:10.1016/j.jde.2015.06.041
- On the inviscid Boussinesq system with rough initial data, Journal of Mathematical Analysis and Applications, Volume 430 (2015) no. 2, p. 777 | DOI:10.1016/j.jmaa.2015.04.087
- Local well-posedness for the ideal incompressible density-dependent viscoelastic flow, Mathematical Methods in the Applied Sciences, Volume 38 (2015) no. 6, p. 1081 | DOI:10.1002/mma.3130
- The well-posedness theory for Euler–Poisson fluids with non-zero heat conduction, Journal of Hyperbolic Differential Equations, Volume 11 (2014) no. 04, p. 679 | DOI:10.1142/s0219891614500210
- Continuous properties of the solution map for the Euler equations, Journal of Mathematical Physics, Volume 55 (2014) no. 3 | DOI:10.1063/1.4867622
- Remarks on the lifespan of the solutions to some models of incompressible fluid mechanics, Proceedings of the American Mathematical Society, Volume 141 (2012) no. 6, p. 1979 | DOI:10.1090/s0002-9939-2012-11591-6
- The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces, Journal de Mathématiques Pures et Appliquées, Volume 96 (2011) no. 3, p. 253 | DOI:10.1016/j.matpur.2011.04.005
- A note on incompressible limit for compressible Euler equations, Mathematical Methods in the Applied Sciences, Volume 34 (2011) no. 7, p. 831 | DOI:10.1002/mma.1405
- Local well-posedness for the homogeneous Euler equations, Nonlinear Analysis: Theory, Methods Applications, Volume 74 (2011) no. 11, p. 3829 | DOI:10.1016/j.na.2011.03.037
- Regularity criteria for the Euler equations with nondecaying data, Nonlinear Analysis: Theory, Methods Applications, Volume 74 (2011) no. 4, p. 1393 | DOI:10.1016/j.na.2010.10.011
- On the well-posedness of the incompressible density-dependent Euler equations in theLpframework, Journal of Differential Equations, Volume 248 (2010) no. 8, p. 2130 | DOI:10.1016/j.jde.2009.09.007
- Local well-posedness and regularity criterion for the density dependent incompressible Euler equations, Nonlinear Analysis: Theory, Methods Applications, Volume 73 (2010) no. 3, p. 750 | DOI:10.1016/j.na.2010.04.013
- Counterexamples of Commutator Estimates in the Besov and the Triebel–Lizorkin Spaces Related to the Euler Equations, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 6, p. 2473 | DOI:10.1137/100782498
- Аксиально-симметричные несжимаемые потоки с ограниченным вихрем, Успехи математических наук, Volume 62 (2007) no. 3, p. 73 | DOI:10.4213/rm6761
Cité par 21 documents. Sources : Crossref